Advertisement
Research Article| Volume 11, ISSUE 3, P354-360, May 1991

Sclerosis: A glomerular response to injury

  • Paul D. Killen
    Correspondence
    Address reprint requests to Paul D. Killen, MD, PhD, Department of Pathology, 1301 Catherine Rd, Box 0602, Ann Arbor, MI 48109-0602.
    Affiliations
    From the Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
    Search for articles by this author
      This paper is only available as a PDF. To read, Please Download here.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Nephrology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Vracko R.
        Basal lamina scaffold-anatomy and significance for maintenance of orderly tissue structure.
        Am J Pathol. 1974; 77: 314-346
        • Laurie G.W.
        • Leblond C.P.
        Basement membrane nomenclature.
        Nature. 1985; 313 (letter): 272
        • Krakower C.A.
        • Greenspon S.A.
        Localization of the nephrotoxic antigen within the isolated glomerulus.
        Arch Pathol. 1951; 51: 629-639
        • Goodman M.
        • Greenspon S.A.
        • Krakower C.A.
        The antigenic composition of the various anatomic structures of the canine kidney.
        J Immunol. 1955; 75: 96-104
        • Kefalides N.A.
        Isolation and characterization of the collagen from glomerular basement membrane.
        Biochemistry. 1968; 7: 3103-3112
        • Orkin R.W.
        • Gehron P.
        • McGoodwin E.B.
        • et al.
        A murine tumor producing a matrix of basement membrane.
        J Exp Med. 1977; 145: 204-220
        • Martin G.R.
        • Timpl R.
        • Kuhn K.
        Basement membrane proteins: Molecular structure and function.
        Adv Protein Chem. 1988; 39: 1-50
        • Timpl R.
        • Weidemann H.
        • van Delden V.
        • et al.
        A network model for the organization of type IV collagen molecules in basement membranes.
        Eur J Biochem. 1981; 120: 203-211
        • Weber S.
        • Dolz R.
        • Timpl R.
        • et al.
        Reductive cleavage and reformation of the intrachain and intrachain disulfide bonds in the globular hexameric domain NCI involved in network assembly of basement membrane collagen (type IV).
        Eur J Biochem. 1988; 175: 229-236
        • Brazel D.
        • Oberbaumer I.
        • Dieringer H.
        • et al.
        Completion of the amino acid sequence of the alpha 1 chain of human basement membrane collagen (type IV) reveals 21 non-triplet interruptions located within the collagenous domain.
        Eur J Biochem. 1987; 168: 529-536
        • Hofmann H.
        • Voss T.
        • Kuhn K.
        • et al.
        Localization of flexible sites in thread-like molecules from electron micrographs. Comparison of interstitial, basement membrane and intima collagens.
        J Mol Biol. 1984; 172: 325-343
        • Yurchenco P.D.
        • Furthmayr H.
        Self-assembly of basement membrane collagen.
        Biochemistry. 1984; 23: 1839-1850
        • Laurie G.W.
        • Bing J.T.
        • Kleinman H.K.
        • et al.
        Localization of binding sites for laminin, heparan sulfate protelglycan and fibronectin on basement membrane (type IV) collagen.
        J Mol Biol. 1986; 189: 205-216
        • Killen P.D.
        • Francomano C.A.
        • Yamada Y.
        • et al.
        Partial structure of the human alpha 2(IV) collagen chain and chromosomal localization of the gene (COL4A2).
        Hum Genet. 1987; 77: 318-324
        • Aumailley M.
        • Timpl R.
        Attachment of cells to basement membrane collagen type IV.
        J Cell Biol. 1986; 103: 1569-1575
        • Cutting G.R.
        • Kazazian Jr, H.H.
        • Antonarakis S.E.
        • et al.
        Macrorestriction mapping of COL4A1 and COL4A2 collagen genes on human chromosome 13834.
        Genomics. 1988; 3: 256-263
        • Saus J.
        • Wieslander J.
        • Langeveld J.P.
        • et al.
        Identification of the Goodpasture antigen as the alpha 3(IV) chain of collagen IV.
        J Biol Chem. 1988; 263: 13374-13380
        • Gunwar S.
        • Saus J.
        • Noelken M.E.
        • et al.
        Glomerular basement membrane. Identification of a fourth chain, alpha 4, of type IV collagen.
        J Biol Chem. 1990; 265: 5466-5469
        • Hostikka S.L.
        • Eddy R.L.
        • Byers M.G.
        • et al.
        Identification of a distinct type IV collagen alpha chain with restricted kidney distribution and assignment of its gene to the locus of X chromosome-linked Alport syndrome.
        in: Proc Natl Acad Sci USA. 87. 1990: 1606-1610
        • Barker D.F.
        • Hostikka S.L.
        • Zhou J.
        • et al.
        Identification of mutations in the COL4A5 collagen gene in Alport syndrome.
        Science. 1990; 248: 1224-1227
        • Sasaki M.
        • Kleinman H.K.
        • Huber H.
        • et al.
        Laminin, a multidomain protein. The A chain has a unique globular domain and homology with the basement membrane proteoglycan and the laminin B chains.
        J Biol Chem. 1988; 263: 16536-16544
        • Graf J.
        • Ogle R.C.
        • Robey F.A.
        • et al.
        A pentapeptide from the laminin B1 chain mediates cell adhesion and binds the 67,000 laminin receptor.
        Biochemistry. 1987; 26: 6896-6900
        • Thompson H.L.
        • Burbelo P.D.
        • Yamada Y.
        • et al.
        Mast cells chemotax to laminin with enhancement after IgE-mediated activation.
        J Immunol. 1989; 143: 4188-4192
        • Panayotou G.
        • End P.
        • Aumailley M.
        • et al.
        Domains of laminin with growth-factor activity.
        Cell. 1989; 56: 93-101
        • Ekblom M.
        • Klein G.
        • Mugrauer G.
        • et al.
        Transient and locally restricted expression of laminin A chain mRNA by developing epithelial cells during kidney organogenesis.
        Cell. 1990; 60: 337-346
        • Klein G.
        • Langegger M.
        • Timpl R.
        • et al.
        Role of laminin A chain in the development of epithelial cell polarity.
        Cell. 1988; 55: 331-341
        • Aumailley M.
        • Gerl M.
        • Sonnenberg A.
        • et al.
        Identification of the Arg-Gly-Asp sequence in laminin A chain as a latent cell-binding site being exposed in fragment Pl.
        FEBS Lett. 1990; 262: 82-86
        • Sasaki M.
        • Kato S.
        • Kohno K.
        • et al.
        Sequence of the cDNA encoding the laminin B1 chain reveals a multidomain protein containing cysteine-rich repeats.
        in: Proc Natl Acad Sci USA. 84. 1987: 935-939
        • Sasaki M.
        • Yamada Y.
        The laminin B2 chain has a multidomain structure homologous to the B1 chain.
        J Biol Chem. 1987; 262: 17111-17117
        • Paulsson M.
        • Deutzmann R.
        • Timpl R.
        • et al.
        Evidence for coiled-coil alpha-helical regions in the long arm of laminin.
        EMBO J. 1985; 4: 309-316
        • Kleinman H.K.
        • Ebihara I.
        • Killen P.D.
        • et al.
        Genes for basement membrane proteins are coordinately expressed in differentiating F9 cells but not in normal adult murine tissues.
        Dev Biol. 1987; 122: 373-378
        • Dziadek M.
        • Timpl R.
        Expression of nidogen and laminin in basement membranes during mouse embryogenesis and in teratocarcinoma cells.
        Dev Biol. 1985; 111: 372-382
        • Hunter D.D.
        • Shah V.
        • Merlie J.P.
        • et al.
        A laminin-like adhesive protein concentrated in the synaptic cleft of the neuromuscular junction.
        Nature. 1999; 338: 229-234
        • Ehrig K.
        • Leivo I.
        • Argraves W.S.
        • et al.
        Merosin, a tissuespecific basement membrane protein, is a laminin-like protein.
        in: Proc Natl Acad Sci USA. 87p. 1990: 3264-3268
        • Hassell J.R.
        • Kimura J.H.
        • Hascall V.C.
        Proteoglycan core protein families.
        Annu Rev Biochem. 1986; 55: 539-567
        • Kanwar Y.S.
        • Farquhar M.G.
        Presence of heparan sulfate in the glomerular basement membrane.
        in: Proc Natl Acad Sci USA. 76. 1979: 1303-1307
        • Kanwar Y.S.
        • Linker A.
        • Farquhar M.G.
        Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparan sulfate) by enzyme digestion.
        J Cell Biol. 1980; 86: 688-693
        • Kanwar Y.S.
        • Hascall V.C.
        • Jacubowski M.L.
        • et al.
        Effect of beta-D-xyloside on the glomerular proteoglycans. I Biochemical studies.
        J Cell Biol. 1984; 99: 715-722
        • Edge A.S.
        • Spiro R.G.
        Selective deglycosylation of the heparan sulfate proteoglycan of bovine glomerular basement membrane and identification of the core protein.
        J Biol Chem. 1987; 262: 6893-6898
        • Ledbetter S.R.
        • Tyree B.
        • Hassell J.R.
        • et al.
        Identification of the precursor protein to basement membrane heparan sulfate proteoglycans.
        J Biol Chem. 1985; 260: 8106-8113
        • Ledbetter S.R.
        • Fisher L.W.
        • Hassell J.R.
        Domain structure of the basement membrane heparan sulfate proteoglycan.
        Biochemistry. 1987; 26: 988-995
        • Klein D.J.
        • Brown D.M.
        • Oegema T.R.
        • et al.
        Glomerular basement membrane proteoglycans are derived from a large precursor.
        J Cell Biol. 1988; 106: 963-970
        • Carlin B.
        • Jaffe R.
        • Bender B.
        • et al.
        Entactin, a novel basal lamina-associated sulfated glycoprotein.
        J Biol Chem. 1981; 256: 5209-5214
        • Timpl R.
        • Dziadek M.
        • Fujiwara S.
        • et al.
        Nidogen: A new, self-aggregating basement membrane protein.
        Eur J Biochem. 1983; 137: 455-456
        • Paulsson M.
        • Aumailley M.
        • Deutzmann R.
        • et al.
        Laminin-nidogen complex. Extraction with chelating agents and structural characterization.
        Eur J Biochem. 1987; 166: 11-19
        • Aumailley M.
        • Wiedemann H.
        • Mann K.
        • et al.
        Binding of nidogen and the laminin-nidogen complex to basement membrane collagen type IV.
        Eur J Biochem. 1989; 184: 241-248
        • Grant D.S.
        • Leblond C.P.
        • Kleinman H.K.
        • et al.
        The incubation of laminin, collagen IV, and heparan sulfate proteoglycan at 35 degrees C yields basement membrane-like structures.
        J Cell Biol. 1989; 108: 1567-1574
        • Albini A.
        • Iwamoto Y.
        • Kleinman H.K.
        • et al.
        A rapid in vitro assay for quantitating the invasive potential of tumor cells.
        Cancer Res. 1987; 47: 3239-3245
        • Yurchenco P.D.
        • Tsilibary E.C.
        • Charonis A.S.
        • et al.
        Laminin polymerization in vitro. Evidence for a two-step assembly with domain specificity.
        J Biol Chem. 1985; 260: 7636-7644
        • Yurchenco P.D.
        • Cheng Y.S.
        • Ruben G.C.
        Self-assembly of a high molecular weight basement membrane heparan sulfate proteoglycan into dimers and oligomers.
        J Biol Chem. 1987; 262: 17668-17676
        • Yurchenco P.D.
        • Tsilibary E.C.
        • Charonis A.S.
        • et al.
        Models for the self-assembly of basement membrane.
        J Histochem Cytochem. 1986; 34: 93-102
        • Dyck R.F.
        • Evans D.J.
        • Lockwood C.M.
        • et al.
        Amyloid P-component in human glomerular basement membrane. Abnormal patterns of immunofluorescent staining in glomerular disease.
        Lancet. 1980; 2: 606-609
        • Wight T.N.
        • Raugi G.J.
        • Mumby S.M.
        • et al.
        Light microscopic immunolocation of thrombospondin in human tissues.
        J Histochem Cytochem. 1985; 33: 295-302
        • Bernstein J.
        • Cheng F.
        • Roszka J.
        Glomerular differentiation in metanephric culture.
        Lab Invest. 1981; 45: 183-190
        • Timpl R.
        Structure and biological activity of basement membrane proteins.
        Eur J Biochem. 1989; 180: 487-502
        • Sariola H.
        • Ekblom P.
        • Lehtonen E.
        • et al.
        Differentiation and vascularization of the metanephric kidney grafted on the chorioallantoic membrane.
        Dev Biol. 1983; 96: 427-435
        • Sariola H.
        • Timpl R.
        • von der Mark K.
        • et al.
        Dual origin of glomerular basement membrane.
        Dev Biol. 1984; 101: 86-96
        • Striker G.E.
        • Killen P.D.
        • Farm F.M.
        Human glomerular cells in vitro: Isolation and characterization.
        in: Transplant Proc. 12. 1980: 88-99
        • Haralson M.A.
        • Jacobson H.R.
        • Hoover R.L.
        Collagen polymorphism in cultured rat kidney mesangial cells.
        Lab Invest. 1987; 57: 513-523
        • Stow J.L.
        • Soroka C.J.
        • MacKay K.
        • et al.
        Basement membrane heparan sulfate proteoglycan is the main proteoglycan synthesized by glomerular epithelial cells in culture.
        Am J Pathol. 1989; 135: 637-646
        • Klein D.J.
        • Brown D.M.
        • Kim Y.
        • et al.
        Proteoglycans synthesized by human glomerular mesangial cells in culture.
        J Biol Chem. 1990; 265: 9533-9543
        • Border W.A.
        • Okuda S.
        • Languino L.R.
        • et al.
        Transforming growth factor-beta regulates production of proteoglycans by mesangial cells.
        Kidney Int. 1990; 37: 689-695
        • Laurie G.W.
        • Horikoshi S.
        • Killen P.D.
        • et al.
        In situ hybridization reveals temporal and spatial changes in cellular expression of mRNA for a laminin receptor, laminin, and basement membrane (type IV) collagen in the developing kidney.
        J Cell Biol. 1989; 109: 1351-1362
        • Davies M.
        • Thomas G.J.
        • Martin J.
        • et al.
        The purification and characterization of a glomerular-basement-membrane-degrading neutral proteinase from rat mesangial cells.
        Biochem J. 1988; 251: 419-425
        • Schiffer M.S.
        • Michael A.F.
        • Kim Y.
        • et al.
        Distribution of glomerular basement membrane antigens in diseased human kidneys.
        Lab Invest. 1981; 44: 234-240
        • Matsuo S.
        • Brentjens J.R.
        • Andres G.
        • et al.
        Distribution of basement membrane antigens in glomeruli of mice with autoimmune glomerulonephritis.
        Am J Pathol. 1986; 122: 36-49
        • Fukatsu A.
        • Matsuo S.
        • Killen P.D.
        • et al.
        The glomerular distribution of type IV collagen and laminin in human membranous glomerulonephritis.
        Hum Pathol. 1988; 19: 64-68
        • Kim Y.
        • Kleppel M.M.
        • Butkowski R.
        • et al.
        Differential expression of basement membrane collagen chains in diabetic nephropathy.
        Am J Pathol. 1991; 138: 413-420