Advertisement

Dysregulation of Renal Aquaporins and Epithelial Sodium Channel in Lithium-Induced Nephrogenic Diabetes Insipidus

      Summary

      Lithium is used commonly to treat bipolar mood disorders. In addition to its primary therapeutic effects in the central nervous system lithium has a number of side effects in the kidney. The side effects include nephrogenic diabetes insipidus with polyuria, mild sodium wasting, and changes in acid/base balance. These functional changes are associated with marked structural changes in collecting duct cell composition and morphology, likely contributing to the functional changes. Over the past few years, investigations of lithium-induced renal changes have provided novel insight into the molecular mechanisms that are responsible for the disturbances in water, sodium, and acid/base metabolism. This includes dysregulation of renal aquaporins, epithelial sodium channel, and acid/base transporters. This review focuses on these issues with the aim to present this in context with clinically relevant features.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Nephrology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Timmer R.T.
        • Sands J.M.
        Lithium intoxication.
        J Am Soc Nephrol. 1999; 10: 666-674
        • Christensen S.
        • Kusano E.
        • Yusufi A.N.
        • Murayama N.
        • Dousa T.P.
        Pathogenesis of nephrogenic diabetes insipidus due to chronic administration of lithium in rats.
        J Clin Invest. 1985; 75: 1869-1879
        • Kwon T.H.
        • Laursen U.H.
        • Marples D.
        • Maunsbach A.B.
        • Knepper M.A.
        • Frokiaer J.
        • et al.
        Altered expression of renal AQPs and Na(+) transporters in rats with lithium-induced NDI.
        Am J Physiol Renal Physiol. 2000; 279: F552-F564
        • Marples D.
        • Christensen S.
        • Christensen E.I.
        • Ottosen P.D.
        • Nielsen S.
        Lithium-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla.
        J Clin Invest. 1995; 95: 1838-1845
        • Roscoe J.M.
        • Goldstein M.B.
        • Halperin M.L.
        • Wilson D.R.
        • Stinebaugh B.J.
        Lithium-induced impairment of urine acidification.
        Kidney Int. 1976; 9: 344-350
        • Nascimento L.
        • Rademacher D.R.
        • Hamburger R.
        • Arruda J.A.
        • Kurtzman A.
        On the mechanism of lithium-induced renal tubular acidosis.
        J Lab Clin Med. 1977; 89: 455-462
        • DuBose Jr, T.D.
        • Caflisch C.R.
        Validation of the difference in urine and blood carbon dioxide tension during bicarbonate loading as an index of distal nephron acidification in experimental models of distal renal tubular acidosis.
        J Clin Invest. 1985; 75: 1116-1123
        • Kim Y.H.
        • Kwon T.H.
        • Christensen B.M.
        • Nielsen J.
        • Wall S.M.
        • Madsen K.M.
        • et al.
        Altered expression of renal acid-base transporters in rats with lithium-induced NDI.
        Am J Physiol Renal Physiol. 2003; 285: F1244-F1257
        • Boton R.
        • Gaviria M.
        • Batlle D.C.
        Prevalence, pathogenesis, and treatment of renal dysfunction associated with chronic lithium therapy.
        Am J Kidney Dis. 1987; 10: 329-345
        • Nielsen J.
        • Kwon T.H.
        • Praetorius J.
        • Kim Y.H.
        • Frokiaer J.
        • Knepper M.A.
        • et al.
        Segment-specific ENaC downregulation in kidney of rats with lithium-induced NDI.
        Am J Physiol Renal Physiol. 2003; 285: F1198-F1209
        • Halperin M.L.
        • Goldstein M.B.
        • Haig A.
        • Johnson M.D.
        • Stinebaugh B.J.
        Studies on the pathogenesis of type I (distal) renal tubular acidosis as revealed by the urinary PCO2 tensions.
        J Clin Invest. 1974; 53: 669-677
        • Arruda J.A.
        • Dytko G.
        • Mola R.
        • Kurtzman N.A.
        On the mechanism of lithium-induced renal tubular acidosis: studies in the turtle bladder.
        Kidney Int. 1980; 17: 196-204
        • Christensen B.M.
        • Marples D.
        • Kim Y.H.
        • Wang W.
        • Frokiaer J.
        • Nielsen S.
        Changes in cellular composition of kidney collecting duct cells in rats with lithium-induced NDI.
        Am J Physiol Cell Physiol. 2004; 286: C952-C964
        • Christensen B.M.
        • Kim Y.H.
        • Kwon T.H.
        • Nielsen S.
        Lithium treatment induces a marked proliferation of primarily principal cells in rat kidney inner medullary collecting duct.
        Am J Physiol Renal Physiol. 2006; 291: F39-F48
        • Radomski J.
        • Fuyat H.
        • Nelson A.
        • Smith P.
        The toxic effects, excretion and distribution of lithium chloride.
        J Pharmacol Exp Ther. 1950; 100: 429
        • Greger R.
        Possible sites of lithium transport in the nephron.
        Kidney Int Suppl. 1990; 28: S26-S30
        • Holstein-Rathlou N.H.
        Lithium transport across biological membranes.
        Kidney Int Suppl. 1990; 28: S4-S9
        • Thomsen K.
        • Schou M.
        Renal lithium excretion in man.
        Am J Physiol. 1968; 215: 823-827
        • Hayslett J.P.
        • Kashgarian M.
        A micropuncture study of the renal handling of lithium.
        Pflugers Arch. 1979; 380: 159-163
        • Thomsen K.
        • Shirley D.G.
        The validity of lithium clearance as an index of sodium and water delivery from the proximal tubules.
        Nephron. 1997; 77: 125-138
        • Thomsen K.
        • Shalmi M.
        • Olesen O.V.
        Effect of low dietary sodium and potassium on lithium clearance in rats.
        Miner Electrolyte Metab. 1993; 19: 91-98
        • Fransen R.
        • Boer W.H.
        • Boer P.
        • Koomans H.A.
        Amiloride-sensitive lithium reabsorption in rats: a micropuncture study.
        J Pharmacol Exp Ther. 1992; 263: 646-650
        • Shirley D.G.
        • Walter S.J.
        • Sampson B.
        A micropuncture study of renal lithium reabsorption: effects of amiloride and furosemide.
        Am J Physiol. 1992; 263: F1128-F1133
        • Walter S.J.
        • Sampson B.
        • Shirley D.G.
        A micropuncture study of renal tubular lithium reabsorption in sodium-depleted rats.
        J Physiol. 1995; 483: 473-479
        • Shalmi M.
        • Jonassen T.
        • Thomsen K.
        • Kibble J.D.
        • Bie P.
        • Christensen S.
        Model explaining the relation between distal nephron Li+ reabsorption and urinary Na+ excretion in rats.
        Am J Physiol. 1998; 274: F445-F452
        • Palmer L.G.
        • Frindt G.
        Conductance and gating of epithelial Na channels from rat cortical collecting tubule.
        J Gen Physiol. 1988; 92: 121-138
        • Kellenberger S.
        • Schild L.
        Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure.
        Physiol Rev. 2002; 82: 735-767
        • Bedford J.J.
        • Leader J.P.
        • Jing R.
        • Walker L.J.
        • Klein J.D.
        • Sands J.M.
        • et al.
        Amiloride restores renal medullary osmolytes in lithium-induced nephrogenic diabetes insipidus.
        Am J Physiol Renal Physiol. 2008; 294: F812-F820
        • Hardman T.C.
        • Lant A.F.
        Controversies surrounding erythrocyte sodium-lithium countertransport.
        J Hypertens. 1996; 14: 695-703
        • Skou J.C.
        The influence of some cations on adenosine triphosphatase from peripheral nerves.
        J Am Soc Nephrol. 1998; 9: 2170-2177
        • Gutman Y.
        • Hochman S.
        • Wald H.
        The differential effect of Li + on microsomal ATPase in cortex, medulla and papilla of the rat kidney.
        Biochim Biophys Acta. 1973; 298: 284-290
        • Siegel G.J.
        • Tormay A.
        • Candia O.A.
        Microsomal (Na- +K+)-activated ATPase from frog skin epithelium.
        Biochim Biophys Acta. 1975; 389: 547-566
        • Rodland K.D.
        • Dunham P.B.
        Kinetics of lithium efflux through the (Na,K)-pump of human erythrocytes.
        Biochim Biophys Acta. 1980; 602: 376-388
        • Diamond J.M.
        • Ehrlich B.E.
        • Morawski S.G.
        • Santa Ana C.A.
        • Fordtran J.S.
        Lithium absorption in tight and leaky segments of intestine.
        J Membr Biol. 1983; 72: 153-159
        • Laursen U.H.
        • Pihakaski-Maunsbach K.
        • Kwon T.H.
        • Ostergaard J.E.
        • Nielsen S.
        • Maunsbach A.B.
        Changes of rat kidney AQP2 and Na,K-ATPase mRNA expression in lithium-induced nephrogenic diabetes insipidus.
        Nephron Exp Nephrol. 2004; 97: e1-e16
        • Nielsen J.
        • Kwon T.H.
        • Praetorius J.
        • Frokiaer J.
        • Knepper M.A.
        • Nielsen S.
        Aldosterone increases urine production and decreases apical AQP2 expression in rats with diabetes insipidus.
        Am J Physiol Renal Physiol. 2006; 290: F438-F449
        • Li Y.
        • Shaw S.
        • Kamsteeg E.J.
        • Vandewalle A.
        • Deen P.M.
        Development of lithium-induced nephrogenic diabetes insipidus is dissociated from adenylyl cyclase activity.
        J Am Soc Nephrol. 2006; 17: 1063-1072
        • Kanno K.
        • Sasaki S.
        • Hirata Y.
        • Ishikawa S.
        • Fushimi K.
        • Nakanishi S.
        • et al.
        Urinary excretion of aquaporin-2 in patients with diabetes insipidus.
        N Engl J Med. 1995; 332: 1540-1545
        • Nielsen S.
        • Muller J.
        • Knepper M.A.
        Vasopressin- and cAMP-induced changes in ultrastructure of isolated perfused inner medullary collecting ducts.
        Am J Physiol. 1993; 265: F225-F238
        • Pisitkun T.
        • Shen R.F.
        • Knepper M.A.
        Identification and proteomic profiling of exosomes in human urine.
        Proc Natl Acad Sci U S A. 2004; 101: 13368-13373
        • Wen H.
        • Frokiaer J.
        • Kwon T.H.
        • Nielsen S.
        Urinary excretion of aquaporin-2 in rat is mediated by a vasopressin-dependent apical pathway.
        J Am Soc Nephrol. 1999; 10: 1416-1429
        • Walker R.J.
        • Weggery S.
        • Bedford J.J.
        • McDonald F.J.
        • Ellis G.
        • Leader J.P.
        Lithium-induced reduction in urinary concentrating ability and urinary aquaporin 2 (AQP2) excretion in healthy volunteers.
        Kidney Int. 2005; 67: 291-294
        • Rojek A.
        • Fuchtbauer E.M.
        • Kwon T.H.
        • Frokiaer J.
        • Nielsen S.
        Severe urinary concentrating defect in renal collecting duct-selective AQP2 conditional-knockout mice.
        Proc Natl Acad Sci U S A. 2006; 103: 6037-6042
        • Ecelbarger C.A.
        • Terris J.
        • Frindt G.
        • Echevarria M.
        • Marples D.
        • Nielsen S.
        • et al.
        Aquaporin-3 water channel localization and regulation in rat kidney.
        Am J Physiol. 1995; 269: F663-F672
        • Hasler U.
        • Vinciguerra M.
        • Vandewalle A.
        • Martin P.Y.
        • Feraille E.
        Dual effects of hypertonicity on aquaporin-2 expression in cultured renal collecting duct principal cells.
        J Am Soc Nephrol. 2005; 16: 1571-1582
        • Hasler U.
        • Jeon U.S.
        • Kim J.A.
        • Mordasini D.
        • Kwon H.M.
        • Feraille E.
        • et al.
        Tonicity-responsive enhancer binding protein is an essential regulator of aquaporin-2 expression in renal collecting duct principal cells.
        J Am Soc Nephrol. 2006; 17: 1521-1531
        • Ma T.
        • Song Y.
        • Yang B.
        • Gillespie A.
        • Carlson E.J.
        • Epstein C.J.
        • et al.
        Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels.
        Proc Natl Acad Sci U S A. 2000; 97: 4386-4391
        • Hanlon L.W.
        • Romaine M.
        • Gilory F.J.
        • Deitrick J.E.
        Lithium chloride as a substitute for sodium chloride in the diet.
        JAMA. 1949; 139: 688-692
        • Corcoran A.C.
        • Taylor R.D.
        • Page I.H.
        Lithium poisoning from the use of salt substitutes.
        JAMA. 1949; 139: 685-688
        • Schou M.
        Lithium studies.
        Acta Pharmacol Toxicol (Copenh). 1958; 15: 70-84
        • Baer L.
        • Kassir S.
        • Fieve R.
        Lithium-induced changes in electrolyte balance and tissue electrolyte concentration.
        Psychopharmacologia. 1970; 17: 216-224
        • Baer L.
        • Glassman A.H.
        • Kassir S.
        Negative sodium balance in lithium carbonate toxicity.
        Arch Gen Psychiatry. 1973; 29: 823-827
        • Thomsen K.
        The effect of sodium chloride on kidney function in rats with lithium intoxication.
        Acta Pharmacol Toxicol (Copenh). 1973; 33: 92-102
        • Thomsen K.
        • Jensen J.
        • Olesen O.V.
        Lithium-induced loss of body sodium and the development of severe intoxication in rats.
        Acta Pharmacol Toxicol (Copenh). 1974; 35: 337-346
        • Thomsen K.
        • Jensen J.
        • Olesen O.V.
        Effect of prolonged lithium ingestion on the response to mineralocorticoids in rats.
        J Pharmacol Exp Ther. 1976; 196: 463-468
        • Iaina A.
        • Shochat J.
        • Serban I.
        • Kapuler S.
        • Gavendo S.
        • Goldfarb D.
        • et al.
        Lithium prevents saline deoxycorticosterone acetate (DOCA) hypertension in the rat.
        J Lab Clin Med. 1982; 99: 231-238
        • Thomsen K.
        • Bak M.
        • Shirley D.G.
        Chronic lithium treatment inhibits amiloride-sensitive sodium transport in the rat distal nephron.
        J Pharmacol Exp Ther. 1999; 289: 443-447
        • Schou M.
        Lithium studies.
        Acta Pharmacol Toxicol (Copenh). 1958; 15: 85-98
        • Galla J.N.
        • Forrest J.N.
        • Hecht B.
        • Kashgarian M.
        • Hayslett J.P.
        Effect of lithium on water and electrolyte metabolism.
        Yale J Biol Med. 1975; 48: 305-314
        • Hecht B.
        • Kashgarian M.
        • Forrest Jr, J.N.
        • Hayslett J.P.
        Micropuncture study on the effects of lithium on proximal and distal tubule function in the rat kidney.
        Pflugers Arch. 1978; 377: 69-74
        • Ecelbarger C.A.
        • Kim G.H.
        • Terris J.
        • Masilamani S.
        • Mitchell C.
        • Reyes I.
        • et al.
        Vasopressin-mediated regulation of epithelial sodium channel abundance in rat kidney.
        Am J Physiol Renal Physiol. 2000; 279: F46-F53
        • Nicco C.
        • Wittner M.
        • DiStefano A.
        • Jounier S.
        • Bankir L.
        • Bouby N.
        Chronic exposure to vasopressin upregulates ENaC and sodium transport in the rat renal collecting duct and lung.
        Hypertension. 2001; 38: 1143-1149
        • Sauter D.
        • Fernandes S.
        • Goncalves-Mendes N.
        • Boulkroun S.
        • Bankir L.
        • Loffing J.
        • et al.
        Long-term effects of vasopressin on the subcellular localization of ENaC in the renal collecting system.
        Kidney Int. 2006; 69: 1024-1032
        • Asher C.
        • Wald H.
        • Rossier B.C.
        • Garty H.
        Aldosterone-induced increase in the abundance of Na+ channel subunits.
        Am J Physiol. 1996; 271: C605-C611
        • Masilamani S.
        • Kim G.H.
        • Mitchell C.
        • Wade J.B.
        • Knepper M.A.
        Aldosterone-mediated regulation of ENaC alpha, beta, and gamma subunit proteins in rat kidney.
        J Clin Invest. 1999; 104: R19-R23
        • Escoubet B.
        • Coureau C.
        • Bonvalet J.P.
        • Farman N.
        Noncoordinate regulation of epithelial Na channel and Na pump subunit mRNAs in kidney and colon by aldosterone.
        Am J Physiol. 1997; 272: C1482-C1491
        • Loffing J.
        • Zecevic M.
        • Feraille E.
        • Kaissling B.
        • Asher C.
        • Rossier B.C.
        • et al.
        Aldosterone induces rapid apical translocation of ENaC in early portion of renal collecting system: possible role of SGK.
        Am J Physiol Renal Physiol. 2001; 280: F675-F682
        • Stokes J.B.
        • Sigmund R.D.
        Regulation of rENaC mRNA by dietary NaCl and steroids: organ, tissue, and steroid heterogeneity.
        Am J Physiol. 1998; 274: C1699-C1707
        • Renard S.
        • Voilley N.
        • Bassilana F.
        • Lazdunski M.
        • Barbry P.
        Localization and regulation by steroids of the alpha, beta and gamma subunits of the amiloride-sensitive Na+ channel in colon, lung and kidney.
        Pflugers Arch. 1995; 430: 299-307
        • Ono S.
        • Kusano E.
        • Muto S.
        • Ando Y.
        • Asano Y.
        A low-Na+ diet enhances expression of mRNA for epithelial Na+ channel in rat renal inner medulla.
        Pflugers Arch. 1997; 434: 756-763
        • Wolf K.
        • Castrop H.
        • Riegger G.A.
        • Kurtz A.
        • Kramer B.K.
        Differential gene regulation of renal salt entry pathways by salt load in the distal nephron of the rat.
        Pflugers Arch. 2001; 442: 498-504
        • Masilamani S.
        • Wang X.
        • Kim G.H.
        • Brooks H.
        • Nielsen J.
        • Nielsen S.
        • et al.
        Time course of renal Na-K-ATPase, NHE3, NKCC2, NCC, and ENaC abundance changes with dietary NaCl restriction.
        Am J Physiol Renal Physiol. 2002; 283: F648-F657
        • Loffing J.
        • Pietri L.
        • Aregger F.
        • Bloch-Faure M.
        • Ziegler U.
        • Meneton P.
        • et al.
        Differential subcellular localization of ENaC subunits in mouse kidney in response to high- and low-Na diets.
        Am J Physiol Renal Physiol. 2000; 279: F252-F258
        • Loffing J.
        • Loffing-Cueni D.
        • Valderrabano V.
        • Klausli L.
        • Hebert S.C.
        • Rossier B.C.
        • et al.
        Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron.
        Am J Physiol Renal Physiol. 2001; 281: F1021-F1027
        • Nielsen J.
        • Kwon T.H.
        • Frokiaer J.
        • Knepper M.A.
        • Nielsen S.
        Lithium-induced NDI in rats is associated with loss of alpha-ENaC regulation by aldosterone in CCD.
        Am J Physiol Renal Physiol. 2006; 290: F1222-F1233
        • Firsov D.
        • Schild L.
        • Gautschi I.
        • Merillat A.M.
        • Schneeberger E.
        • Rossier B.C.
        Cell surface expression of the epithelial Na channel and a mutant causing Liddle syndrome: a quantitative approach.
        Proc Natl Acad Sci U S A. 1996; 93: 15370-15375
        • May A.
        • Puoti A.
        • Gaeggeler H.P.
        • Horisberger J.D.
        • Rossier B.C.
        Early effect of aldosterone on the rate of synthesis of the epithelial sodium channel alpha subunit in A6 renal cells.
        J Am Soc Nephrol. 1997; 8: 1813-1822
        • Rubera I.
        • Loffing J.
        • Palmer L.G.
        • Frindt G.
        • Fowler-Jaeger N.
        • Sauter D.
        • et al.
        Collecting duct-specific gene inactivation of alphaENaC in the mouse kidney does not impair sodium and potassium balance.
        J Clin Invest. 2003; 112: 554-565
        • Canessa C.M.
        • Schild L.
        • Buell G.
        • Thorens B.
        • Gautschi I.
        • Horisberger J.D.
        • et al.
        Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits.
        Nature. 1994; 367: 463-467
        • Awayda M.S.
        • Tousson A.
        • Benos D.J.
        Regulation of a cloned epithelial Na+ channel by its beta- and gamma-subunits.
        Am J Physiol. 1997; 273: C1889-C1899
        • Hummler E.
        • Barker P.
        • Talbot C.
        • Wang Q.
        • Verdumo C.
        • Grubb B.
        • et al.
        A mouse model for the renal salt-wasting syndrome pseudohypoaldosteronism.
        Proc Natl Acad Sci U S A. 1997; 94: 11710-11715
        • Barker P.M.
        • Nguyen M.S.
        • Gatzy J.T.
        • Grubb B.
        • Norman H.
        • Hummler E.
        • et al.
        Role of gammaENaC subunit in lung liquid clearance and electrolyte balance in newborn mice.
        J Clin Invest. 1998; 102: 1634-1640
        • McDonald F.J.
        • Yang B.
        • Hrstka R.F.
        • Drummond H.A.
        • Tarr D.E.
        • McCray Jr, P.B.
        • et al.
        Disruption of the beta subunit of the epithelial Na+ channel in mice: hyperkalemia and neonatal death associated with a pseudohypoaldosteronism phenotype.
        Proc Natl Acad Sci U S A. 1999; 96: 1727-1731
        • Almeida A.J.
        • Burg M.B.
        Sodium transport in the rabbit connecting tubule.
        Am J Physiol. 1982; 243: F330-F334
        • Reif M.C.
        • Troutman S.L.
        • Schafer J.A.
        Sodium transport by rat cortical collecting tubule.
        J Clin Invest. 1986; 77: 1291-1298
        • Shareghi G.R.
        • Stoner L.C.
        Calcium transport across segments of the rabbit distal nephron in vitro.
        Am J Physiol. 1978; 235: F367-F375
        • Tomita K.
        • Pisano J.J.
        • Knepper M.A.
        Control of sodium and potassium transport in the cortical collecting duct of the rat.
        J Clin Invest. 1985; 76: 132-136
        • Hummler E.
        • Barker P.
        • Gatzy J.
        • Beermann F.
        • Verdumo C.
        • Schmidt A.
        • et al.
        Early death due to defective neonatal lung liquid clearance in alpha-ENaC-deficient mice.
        Nat Genet. 1996; 12: 325-328
        • Gamba G.
        Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters.
        Physiol Rev. 2005; 85: 423-493
        • Biber J.
        • Custer M.
        • Magagnin S.
        • Hayes G.
        • Werner A.
        • Lotscher M.
        • et al.
        Renal Na/Pi-cotransporters.
        Kidney Int. 1996; 49: 981-985
        • Murer H.
        • Forster I.
        • Hernando N.
        • Lambert G.
        • Traebert M.
        • Biber J.
        Posttranscriptional regulation of the proximal tubule NaPi-II transporter in response to PTH and dietary P(i).
        Am J Physiol. 1999; 277: F676-F684
        • Bendz H.
        • Sjodin I.
        • Aurell M.
        Renal function on and off lithium in patients treated with lithium for 15 years or more.
        Nephrol Dial Transplant. 1996; 11: 457-460
        • Davis B.M.
        • Pfefferbaum A.
        • Krutzik S.
        • Davis K.L.
        Lithium's effect of parathyroid hormone.
        Am J Psychiatry. 1981; 138: 489-492
        • Boron W.F.
        • Boulpaep E.L.
        Intracellular pH regulation in the renal proximal tubule of the salamander.
        J Gen Physiol. 1983; 81: 53-94
        • Alpern R.J.
        Cell mechanisms of proximal tubule acidification.
        Physiol Rev. 1990; 70: 79-114
        • Kwon T.H.
        • Fulton C.
        • Wang W.
        • Kurtz I.
        • Frokiaer J.
        • Aalkjaer C.
        • et al.
        Chronic metabolic acidosis upregulates rat kidney Na-HCO cotransporters NBCn1 and NBC3 but not NBC1.
        Am J Physiol Renal Physiol. 2002; 282: F341-F351
        • Burnham C.E.
        • Flagella M.
        • Wang Z.
        • Amlal H.
        • Shull G.E.
        • Soleimani M.
        Cloning, renal distribution, and regulation of the rat Na+-HCO3- cotransporter.
        Am J Physiol. 1998; 274: F1119-F1126
        • Robey R.B.
        • Ruiz O.S.
        • Espiritu D.J.
        • Ibanez V.C.
        • Kear F.T.
        • Noboa O.A.
        • et al.
        Angiotensin II stimulation of renal epithelial cell Na/HCO3 cotransport activity: a central role for Src family kinase/classic MAPK pathway coupling.
        J Membr Biol. 2002; 187: 135-145
        • Klein J.D.
        • Gunn R.B.
        • Roberts B.R.
        • Sands J.M.
        Down-regulation of urea transporters in the renal inner medulla of lithium-fed rats.
        Kidney Int. 2002; 61: 995-1002
        • Crawford J.D.
        • Kennedy G.C.
        Chlorothiazid in diabetes insipidus.
        Nature. 1959; 183: 891-892
        • Ives H.E.
        • Warnock D.G.
        Diuretic agents.
        in: Katzung B.G. Basic & clinical pharmacology. Prentice-Hall International Inc, London1995: 230-249
        • Hays R.M.
        Agents affecting the renal conservation of water.
        in: Gilman A.G. Rall T.W. Nies A.S. Taylor P. The pharmacological basis of therapeutics. McGraw-Hill, Inc, Singapore1992: 732-742
        • Kim G.H.
        • Lee J.W.
        • Oh Y.K.
        • Chang H.R.
        • Joo K.W.
        • Na K.Y.
        • et al.
        Antidiuretic effect of hydrochlorothiazide in lithium-induced nephrogenic diabetes insipidus is associated with upregulation of aquaporin-2, Na-Cl co-transporter, and epithelial sodium channel.
        J Am Soc Nephrol. 2004; 15: 2836-2843
        • Chen L.
        • Williams S.K.
        • Schafer J.A.
        Differences in synergistic actions of vasopressin and deoxycorticosterone in rat and rabbit CCD.
        Am J Physiol. 1990; 259: F147-F156
        • Hall D.A.
        • Grantham J.J.
        Temperature effect on ADH response of isolated perfused rabbit collecting tubules.
        Am J Physiol. 1980; 239: F595-F601
        • Handler J.S.
        • Preston A.S.
        • Orloff J.
        Effect of adrenal steroid hormones on the response of the toad's urinary bladder to vasopressin.
        J Clin Invest. 1969; 48: 823-833
        • Schwartz M.J.
        • Kokko J.P.
        Urinary concentrating defect of adrenal insufficiency.
        J Clin Invest. 1980; 66: 234-242
        • Kwon T.H.
        • Nielsen J.
        • Masilamani S.
        • Hager H.
        • Knepper M.A.
        • Frokiaer J.
        • et al.
        Regulation of collecting duct AQP3 expression: response to mineralocorticoid.
        Am J Physiol Renal Physiol. 2002; 283: F1403-F1421
        • Stamoutsos B.A.
        • Carpenter R.G.
        • Grossman S.P.
        Role of angiotensin-II in the polydipsia of diabetes insipidus in the Brattleboro rat.
        Physiol Behav. 1981; 26: 691-693
        • Henderson I.W.
        • McKeever A.
        • Kenyon C.J.
        Captopril (SQ 14225) depresses drinking and aldosterone in rats lacking vasopressin.
        Nature. 1979; 281: 569-570
        • Green H.H.
        • Harrington A.R.
        • Valtin H.
        On the role of antidiuretic hormone in the inhibition of acute water diuresis in adrenal insufficiency and the effects of gluco- and mineralocorticoids in reversing the inhibition.
        J Clin Invest. 1970; 49: 1724-1736
        • de S.S.
        • Nielsen J.
        • Olesen E.T.
        • Dimke H.
        • Kwon T.H.
        • Frokiaer J.
        • et al.
        Long-term aldosterone treatment induces decreased apical but increased basolateral expression of AQP2 in CCD of rat kidney.
        Am J Physiol Renal Physiol. 2007; 293: F87-F99
        • Abramow M.
        • Cogan E.
        Role of lithium-ADH interaction in lithium-induced polyuria.
        Adv Nephrol Necker Hosp. 1984; 13: 29-34
        • Singer I.
        • Forrest Jr, J.N.
        Drug-induced states of nephrogenic diabetes insipidus.
        Kidney Int. 1976; 10: 82-95
        • Singer I.
        Lithium and the kidney.
        Kidney Int. 1981; 19: 374-387
        • Nielsen S.
        • Frokiaer J.
        • Marples D.
        • Kwon T.H.
        • Agre P.
        • Knepper M.A.
        Aquaporins in the kidney: from molecules to medicine.
        Physiol Rev. 2002; 82: 205-244
        • Cogan E.
        • Abramow M.
        Inhibition by lithium of the hydroosmotic action of vasopressin in the isolated perfused cortical collecting tubule of the rabbit.
        J Clin Invest. 1986; 77: 1507-1514
        • Cogan E.
        • Svoboda M.
        • Abramow M.
        Mechanisms of lithium-vasopressin interaction in rabbit cortical collecting tubule.
        Am J Physiol. 1987; 252: F1080-F1087
        • Hozawa S.
        • Holtzman E.J.
        • Ausiello D.A.
        cAMP motifs regulating transcription in the aquaporin 2 gene.
        Am J Physiol. 1996; 270: C1695-C1702
        • Matsumura Y.
        • Uchida S.
        • Rai T.
        • Sasaki S.
        • Marumo F.
        Transcriptional regulation of aquaporin-2 water channel gene by cAMP.
        J Am Soc Nephrol. 1997; 8: 861-867
        • Frokiaer J.
        • Marples D.
        • Valtin H.
        • Morris J.F.
        • Knepper M.A.
        • Nielsen S.
        Low aquaporin-2 levels in polyuric DI +/+ severe mice with constitutively high cAMP-phosphodiesterase activity.
        Am J Physiol. 1999; 276: F179-F190
        • Kotnik P.
        • Nielsen J.
        • Kwon T.H.
        • Krzisnik C.
        • Frokiaer J.
        • Nielsen S.
        Altered expression of COX-1, COX-2, and mPGES in rats with nephrogenic and central diabetes insipidus.
        Am J Physiol Renal Physiol. 2005; 288: F1053-F1068
        • Hober C.
        • Vantyghem M.C.
        • Racadot A.
        • Cappoen J.P.
        • Lefebvre J.
        Normal hemodynamic and coagulation responses to 1-deamino-8-D-arginine vasopressin in a case of lithium-induced nephrogenic diabetes insipidus.
        Horm Res. 1992; 37: 190-195
        • Sugawara M.
        • Hashimoto K.
        • Ota Z.
        Involvement of prostaglandin E2, cAMP, and vasopressin in lithium-induced polyuria.
        Am J Physiol. 1988; 254: R863-R869
        • Hebert R.L.
        • Jacobson H.R.
        • Breyer M.D.
        PGE2 inhibits AVP-induced water flow in cortical collecting ducts by protein kinase C activation.
        Am J Physiol. 1990; 259: F318-F325
        • Chabardès D.
        • Brick-Ghannam C.
        • Montégut M.
        • Siaume-Perez S.
        Effect of PGE2 and alpha-adrenergic agonists on AVP-dependent cAMP levels in rabbit and rat CCT.
        Am J Physiol. 1988; 255: F43-F48
        • Zelenina M.
        • Christensen B.M.
        • Palmer J.
        • Nairn A.C.
        • Nielsen S.
        • Aperia A.
        Prostaglandin E(2) interaction with AVP: effects on AQP2 phosphorylation and distribution.
        Am J Physiol Renal Physiol. 2000; 278: F388-F394
        • Tamma G.
        • Wiesner B.
        • Furkert J.
        • Hahm D.
        • Oksche A.
        • Schaefer M.
        • et al.
        The prostaglandin E2 analogue sulprostone antagonizes vasopressin-induced antidiuresis through activation of Rho.
        J Cell Sci. 2003; 116: 3285-3294
        • Berl T.
        • Schrier R.W.
        Mechanism of effect of prostaglandin E 1 on renal water excretion.
        J Clin Invest. 1973; 52: 463-471
        • Rao R.
        • Zhang M.Z.
        • Zhao M.
        • Cai H.
        • Harris R.C.
        • Breyer M.D.
        • et al.
        Lithium treatment inhibits renal GSK-3 activity and promotes cyclooxygenase 2-dependent polyuria.
        Am J Physiol Renal Physiol. 2005; 288: F642-F649
        • Umenishi F.
        • Narikiyo T.
        • Vandewalle A.
        • Schrier R.W.
        cAMP regulates vasopressin-induced AQP2 expression via protein kinase A-independent pathway.
        Biochim Biophys Acta. 2006; 1758: 1100-1105
        • Nielsen J.
        • Hoffert J.D.
        • Knepper M.A.
        • Agre P.
        • Nielsen S.
        • Fenton R.A.
        Proteomic analysis of lithium-induced nephrogenic diabetes insipidus: mechanisms for aquaporin 2 down-regulation and cellular proliferation.
        Proc Natl Acad Sci U S A. 2008; 105: 3634-3639
        • Stambolic V.
        • Ruel L.
        • Woodgett J.R.
        Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells.
        Curr Biol. 1996; 6: 1664-1668
        • Klein P.S.
        • Melton D.A.
        A molecular mechanism for the effect of lithium on development.
        Proc Natl Acad Sci U S A. 1996; 93: 8455-8459
        • Bijur G.N.
        • De S.P.
        • Jope R.S.
        Glycogen synthase kinase-3beta facilitates staurosporine- and heat shock-induced apoptosis.
        J Biol Chem. 2000; 275: 7583-7590
        • Novak A.
        • Dedhar S.
        Signaling through beta-catenin and Lef/Tcf.
        Cell Mol Life Sci. 1999; 56: 523-537