Advertisement
Research Article| Volume 28, ISSUE 3, P252-265, May 2008

Aquaporin 2 Mutations in Nephrogenic Diabetes Insipidus

      Summary

      Water reabsorption in the renal collecting duct is regulated by the antidiuretic hormone vasopressin (AVP). When the vasopressin V2 receptor, present on the basolateral site of the renal principal cell, becomes activated by AVP, aquaporin-2 (AQP2) water channels will be inserted in the apical membrane, and in this fashion, water can be reabsorbed from the pro-urine into the interstitium. The essential role of the vasopressin V2 receptor and AQP2 in the maintenance of body water homeostasis became clear when it was shown that mutations in their genes cause nephrogenic diabetes insipidus, a disorder in which the kidney is unable to concentrate urine in response to AVP. This review describes the current knowledge on AQP2 mutations in nephrogenic diabetes insipidus.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Nephrology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • King L.S.
        • Agre P.
        Pathophysiology of the aquaporin water channels.
        Annu Rev Physiol. 1996; 58: 619-648
        • Koyama N.
        • Ishibashi K.
        • Kuwahara M.
        • et al.
        Cloning and functional expression of human aquaporin8 cDNA and analysis of its gene.
        Genomics. 1998; 54: 169-172
        • Borgnia M.
        • Nielsen S.
        • Engel A.
        • et al.
        Cellular and molecular biology of the aquaporin water channels.
        Annu Rev Biochem. 1999; 68: 425-458
        • Hara-chikuma M.
        • Verkman A.S.
        Physiological roles of glycerol-transporting aquaporins: the aquaglyceroporins.
        Cell Mol Life Sci. 2006; 63: 1386-1392
        • Knepper M.A.
        • Inoue T.
        Regulation of aquaporin-2 water channel trafficking by vasopressin.
        Curr Opin Cell Biol. 1997; 9: 560-564
        • Nonoguchi H.
        • Owada A.
        • Kobayashi N.
        • et al.
        Immunohistochemical localization of V2 vasopressin receptor along the nephron and functional role of luminal V2 receptor in terminal inner medullary collecting ducts.
        J Clin Invest. 1995; 96: 1768-1778
        • Fushimi K.
        • Sasaki S.
        • Marumo F.
        Phosphorylation of serine 256 is required for cAMP- dependent regulatory exocytosis of the aquaporin-2 water channel.
        J Biol Chem. 1997; 272: 14800-14804
        • Katsura T.
        • Gustafson C.E.
        • Ausiello D.A.
        • et al.
        Protein kinase A phosphorylation is involved in regulated exocytosis of aquaporin-2 in transfected LLC-PK1 cells.
        Am J Physiol. 1997; 41: F816-F822
        • Ishibashi K.
        • Sasaki S.
        • Fushimi K.
        • et al.
        Immunolocalization and effect of dehydration on AQP3, a basolateral water channel of kidney collecting ducts.
        Am J Physiol. 1997; 41: F235-F241
        • Kim S.W.
        • Gresz V.
        • Rojek A.
        • et al.
        Decreased expression of AQP2 and AQP4 water channels and Na,K-ATPase in kidney collecting duct in AQP3 null mice.
        Biol Cell. 2005; 97: 765-778
        • Nielsen S.
        • Chou C.L.
        • Marples D.
        • et al.
        Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane.
        Proc Natl Acad Sci U S A. 1995; 92: 1013-1017
        • Lande M.B.
        • Jo I.
        • Zeidel M.L.
        • et al.
        Phosphorylation of aquaporin-2 does not alter the membrane water permeability of rat papillary water channel- containing vesicles.
        J Biol Chem. 1996; 271: 5552-5557
        • Kamsteeg E.J.
        • Wormhoudt T.A.
        • Rijss J.P.L.
        • et al.
        An impaired routing of wild-type aquaporin-2 after tetramerization with an aquaporin-2 mutant explains dominant nephrogenic diabetes insipidus.
        EMBO J. 1999; 18: 2394-2400
        • Van Balkom B.W.M.
        • Savelkoul P.J.
        • Markovich D.
        • et al.
        The role of putative phosphorylation sites in the targeting and shuttling of the aquaporin-2 water channel.
        J Biol Chem. 2002; 277: 41473-41479
        • Christensen B.M.
        • Zelenina M.
        • Aperia A.
        • et al.
        Localization and regulation of PKA-phosphorylated AQP2 in response to V(2)-receptor agonist/antagonist treatment.
        Am J Physiol Renal Physiol. 2000; 278: F29-F42
        • Werten P.J.
        • Hasler L.
        • Koenderink J.B.
        • et al.
        Large-scale purification of functional recombinant human aquaporin-2.
        FEBS Lett. 2001; 504: 200-205
        • Kamsteeg E.J.
        • Heijnen I.
        • van Os C.H.
        • et al.
        The subcellular localization of an aquaporin-2 tetramer depends on the stoichiometry of phosphorylated and nonphosphorylated monomers.
        J Cell Biol. 2000; 151: 919-930
        • Brown D.
        • Katsura T.
        • Gustafson C.E.
        Cellular mechanisms of aquaporin trafficking.
        Am J Physiol. 1998; 275: F328-F331
        • Klussmann E.
        • Maric K.
        • Rosenthal W.
        The mechanisms of aquaporin control in the renal collecting duct.
        Rev Physiol Biochem Pharmacol. 2000; 141: 33-95
        • Marples D.
        • Knepper M.A.
        • Christensen E.I.
        • et al.
        Redistribution of aquaporin-2 water channels induced by vasopressin in rat kidney inner medullary collecting duct.
        Am J Physiol. 1995; 38: C655-C664
        • Nielsen S.
        • Kwon T.H.
        • Christensen B.M.
        • et al.
        Physiology and pathophysiology of renal aquaporins.
        J Am Soc Nephrol. 1999; 10: 647-663
        • Katsura T.
        • Ausiello D.A.
        • Brown D.
        Direct demonstration of aquaporin-2 water channel recycling in stably transfected LLC-PK1 epithelial cells.
        Am J Physiol. 1996; 39: F548-F553
        • Digiovanni S.R.
        • Nielsen S.
        • Christensen E.I.
        • et al.
        Regulation of collecting duct water channel expression by vasopressin in Brattleboro rat.
        Proc Natl Acad Sci U S A. 1994; 91: 8984-8988
        • van Os C.H.
        • Deen P.M.T.
        • Dempster J.A.
        Aquaporins: water selective channels in biological membranes.
        Biochim Biophys Acta. 1994; 1197: 291-309
        • Hozawa S.
        • Holtzman E.J.
        • Ausiello D.A.
        cAMP motifs regulating transcription in the aquaporin 2 gene.
        Am J Physiol. 1996; 39: C1695-C1702
        • Yasui M.
        • Zelenin S.M.
        • Celsi G.
        • et al.
        Adenylate cyclase-coupled vasopressin receptor activates AQP2 promoter via a dual effect on CRE and AP1 elements.
        Am J Physiol. 1997; 41: F443-F450
        • Matsumura Y.
        • Uchida S.
        • Rai T.
        • et al.
        Transcriptional regulation of aquaporin-2 water channel gene by cAMP.
        J Am Soc Nephrol. 1997; 8: 861-867
        • Albertazzi E.
        • Zanchetta D.
        • Barbier P.
        • et al.
        Nephrogenic diabetes insipidus: functional analysis of new AVPR2 mutations identified in Italian families.
        J Am Soc Nephrol. 2000; 11: 1033-1043
        • Arthus M.F.
        • Lonergan M.
        • Crumley M.J.
        • et al.
        Report of 33 novel AVPR2 mutations and analysis of 117 families with X- linked nephrogenic diabetes insipidus.
        J Am Soc Nephrol. 2000; 11: 1044-1054
        • Hansen L.K.
        • Rittig S.
        • Robertson G.L.
        Genetic basis of familial neurohypophyseal diabetes insipidus.
        Trends Endocrinol Metab. 1997; 8: 363-372
        • Rittig S.
        • Siggaard C.
        • Ozata M.
        • et al.
        Autosomal dominant neurohypophyseal diabetes insipidus due to substitution of histidine for tyrosine(2) in the vasopressin moiety of the hormone precursor.
        J Clin Endocrinol Metab. 2002; 87: 3351-3355
        • Robertson G.L.
        • Berl T.
        Pathophysiology of water metabolism.
        in: Brenner B.M. Rector R.C. Disturbances in control of body fluid and composition. Saunders, Philadelphia1995: 873-928
        • Cipriani A.
        • Pretty H.
        • Hawton K.
        • et al.
        Lithium in the prevention of suicidal behavior and all-cause mortality in patients with mood disorders: a systematic review of randomized trials.
        Am J Psychiatry. 2005; 162: 1805-1819
        • Stone K.A.
        Lithium-induced nephrogenic diabetes insipidus.
        J Am Board Fam Pract. 1999; 12: 43-47
        • Schrier R.W.
        • Cadnapaphornchai M.A.
        • Ohara M.
        Water retention and aquaporins in heart failure, liver disease and pregnancy.
        J R Soc Med. 2001; 94: 265-269
        • Marples D.
        • Frokiaer J.
        • Nielsen S.
        Long-term regulation of aquaporins in the kidney.
        Am J Physiol. 1999; 276: F331-F339
        • Deen P.M.T.
        • Weghuis D.O.
        • Sinke R.J.
        • et al.
        Assignment of the human gene for the water channel of renal collecting duct aquaporin 2 (AQP2) to chromosome 12 region q12-- >q13.
        Cytogenet Cell Genet. 1994; 66: 260-262
        • Sasaki S.
        • Fushimi K.
        • Saito H.
        • et al.
        Cloning, characterization, and chromosomal mapping of human aquaporin of collecting duct.
        J Clin Invest. 1994; 93: 1250-1256
        • Mannucci P.M.
        • Ruggeri Z.M.
        • Pareti F.I.
        • et al.
        1-Deamino-8-d-arginine vasopressin: a new pharmacological approach to the management of haemophilia and von Willebrands' diseases.
        Lancet. 1977; 1: 869-872
        • Kaufmann J.E.
        • Oksche A.
        • Wollheim C.B.
        • et al.
        Vasopressin-induced von Willebrand factor secretion from endothelial cells involves V2 receptors and cAMP.
        J Clin Invest. 2000; 106: 107-116
        • Kobrinsky N.L.
        • Doyle J.J.
        • Israels E.D.
        • et al.
        Absent factor VIII response to synthetic vasopressin analogue (DDAVP) in nephrogenic diabetes insipidus.
        Lancet. 1985; 1: 1293-1294
        • Bichet D.G.
        • Razi M.
        • Lonergan M.
        • et al.
        Hemodynamic and coagulation responses to 1-desamino[8-D-arginine] vasopressin in patients with congenital nephrogenic diabetes insipidus.
        N Engl J Med. 1988; 318: 881-887
        • Knoers N.V.A.M.
        • Brommer E.J.
        • Willems H.
        • et al.
        Fibrinolytic responses to 1-desamino-8-D-arginine-vasopressin in patients with congenital nephrogenic diabetes insipidus.
        Nephron. 1990; 54: 322-326
        • Knoers N.V.A.M.
        • Monnens L.A.H.
        A variant of nephrogenic diabetes insipidus: V2 receptor abnormality restricted to the kidney.
        Eur J Pediatr. 1991; 150: 370-373
        • Fushimi K.
        • Uchida S.
        • Hara Y.
        • et al.
        Cloning and expression of apical membrane water channel of rat kidney collecting tubule.
        Nature. 1993; 361: 549-552
        • Saito F.
        • Sasaki S.
        • Chepelinsky A.B.
        • et al.
        Human AQP2 and MIP genes, two members of the MIP family, map within chromosome band 12q13 on the basis of two-color FISH.
        Cytogenet Cell Genet. 1995; 68: 45-48
        • Deen P.M.T.
        • Verdijk M.A.J.
        • Knoers N.V.A.M.
        • et al.
        Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine.
        Science. 1994; 264: 92-95
        • van Lieburg A.F.
        • Verdijk M.A.J.
        • Knoers N.V.A.M.
        • et al.
        Patients with autosomal nephrogenic diabetes insipidus homozygous for mutations in the aquaporin 2 water-channel gene.
        Am J Hum Genet. 1994; 55: 648-652
        • van Lieburg A.F.
        • Knoers N.V.A.M.
        • Mallmann R.
        • et al.
        Normal fibrinolytic responses to 1-desamino-8-D-arginine vasopressin in patients with nephrogenic diabetes insipidus caused by mutations in the aquaporin 2 gene.
        Nephron. 1996; 72: 544-546
        • van Lieburg A.F.
        • Verdijk M.A.J.
        • Schoute F.
        • et al.
        Clinical phenotype of nephrogenic diabetes insipidus in females heterozygous for a vasopressin type 2 receptor mutation.
        Hum Genet. 1995; 96: 70-78
        • Moses A.M.
        • Sangani G.
        • Miller J.L.
        Proposed cause of marked vasopressin resistance in a female with an X-linked recessive V2 receptor abnormality.
        J Clin Endocrinol Metab. 1995; 80: 1184-1186
        • Brown R.M.
        • Fraser N.J.
        • Brown G.K.
        Differential methylation of the hypervariable locus DXS255 on active and inactive X chromosomes correlates with the expression of a human X-linked gene.
        Genomics. 1990; 7: 215-221
        • Deen P.M.T.
        • Croes H.
        • van Aubel R.A.
        • et al.
        Water channels encoded by mutant aquaporin-2 genes in nephrogenic diabetes insipidus are impaired in their cellular routing.
        J Clin Invest. 1995; 95: 2291-2296
        • Marr N.
        • Bichet D.G.
        • Hoefs S.
        • et al.
        Cell-biologic and functional analyses of five new aquaporin-2 missense mutations that cause recessive nephrogenic diabetes insipidus.
        J Am Soc Nephrol. 2002; 13: 2267-2277
        • Marr N.
        • Kamsteeg E.J.
        • Van Raak M.
        • et al.
        Functionality of aquaporin-2 missense mutants in recessive nephrogenic diabetes insipidus.
        Pflugers Arch. 2001; 442: 73-77
        • Mulders S.M.
        • Knoers N.V.A.M.
        • van Lieburg A.F.
        • et al.
        New mutations in the AQP2 gene in nephrogenic diabetes insipidus resulting in functional but misrouted water channels.
        J Am Soc Nephrol. 1997; 8: 242-248
        • Tamarappoo B.K.
        • Verkman A.S.
        Defective aquaporin-2 trafficking in nephrogenic diabetes insipidus and correction by chemical chaperones.
        J Clin Invest. 1998; 101: 2257-2267
        • Kanno K.
        • Sasaki S.
        • Hirata Y.
        • et al.
        Urinary excretion of aquaporin-2 in patients with diabetes insipidus.
        N Engl J Med. 1995; 332: 1540-1545
        • Yang B.
        • Gillespie A.
        • Carlson E.J.
        • et al.
        Neonatal mortality in an aquaporin-2 knock-in mouse model of recessive nephrogenic diabetes insipidus.
        J Biol Chem. 2000; 276: 2775-2779
        • Kamsteeg E.J.
        • Deen P.M.T.
        Importance of aquaporin-2 expression levels in genotype -phenotype studies in nephrogenic diabetes insipidus.
        Am J Physiol Renal Physiol. 2000; 279: F778-F784
        • Canfield M.C.
        • Tamarappoo B.K.
        • Moses A.M.
        • et al.
        Identification and characterization of aquaporin-2 water channel mutations causing nephrogenic diabetes insipidus with partial vasopressin response.
        Hum Mol Genet. 1997; 6: 1865-1871
        • Boccalandro C.
        • De Mattia F.
        • Guo D.C.
        • et al.
        Characterization of an aquaporin-2 water channel gene mutation causing partial nephrogenic diabetes insipidus in a Mexican family: evidence of increased frequency of the mutation in the town of origin.
        J Am Soc Nephrol. 2004; 15: 1223-1231
        • De Mattia F.
        • Savelkoul P.J.
        • Bichet D.G.
        • et al.
        A novel mechanism in recessive nephrogenic diabetes insipidus: wild-type aquaporin-2 rescues the apical membrane expression of intracellularly retained AQP2-P262L.
        Hum Mol Genet. 2004; 13: 3045-3056
        • Kamsteeg E.J.
        • Bichet D.G.
        • Konings I.B.
        • et al.
        Reversed polarized delivery of an aquaporin-2 mutant causes dominant nephrogenic diabetes insipidus.
        J Cell Biol. 2003; 163: 1099-1109
        • Kuwahara M.
        • Iwai K.
        • Ooeda T.
        • et al.
        Three families with autosomal dominant nephrogenic diabetes insipidus caused by aquaporin-2 mutations in the C-terminus.
        Am J Hum Genet. 2001; 69: 738-748
        • Marr N.
        • Bichet D.G.
        • Lonergan M.
        • et al.
        Heteroligomerization of an aquaporin-2 mutant with wild-type aquaporin- 2 and their misrouting to late endosomes/lysosomes explains dominant nephrogenic diabetes insipidus.
        Hum Mol Genet. 2002; 11: 779-789
        • Mulders S.M.
        • Bichet D.G.
        • Rijss J.P.L.
        • et al.
        An aquaporin-2 water channel mutant which causes autosomal dominant nephrogenic diabetes insipidus is retained in the Golgi complex.
        J Clin Invest. 1998; 102: 57-66
        • Afzal A.R.
        • Rajab A.
        • Fenske C.D.
        • et al.
        Recessive Robinow syndrome, allelic to dominant brachydactyly type B, is caused by mutation of ROR2.
        Nat Genet. 2000; 25: 419-422
        • Vikkula M.
        • Mariman E.C.
        • Lui V.C.
        • et al.
        Autosomal dominant and recessive osteochondrodysplasias associated with the COL11A2 locus.
        Cell. 1995; 80: 431-437
        • Wei J.
        • Fish F.A.
        • Myerburg R.J.
        • et al.
        Novel KCNQ1 mutations associated with recessive and dominant congenital long QT syndromes: evidence for variable hearing phenotype associated with R518X.
        Hum Mutat. 2000; 15: 387-388
        • Zhang J.
        • George Jr, A.L.
        • Griggs R.C.
        • et al.
        Mutations in the human skeletal muscle chloride channel gene (CLCN1) associated with dominant and recessive myotonia congenita.
        Neurology. 1996; 47: 993-998
        • Deen P.M.T.
        • Rijss J.P.L.
        • Mulders S.M.
        • et al.
        Aquaporin-2 transfection of Madin-Darby canine kidney cells reconstitutes vasopressin-regulated transcellular osmotic water transport.
        J Am Soc Nephrol. 1997; 8: 1493-1501
        • Procino G.
        • Carmosino M.
        • Marin O.
        • et al.
        Ser-256 phosphorylation dynamics of aquaporin 2 during maturation from the ER to the vesicular compartment in renal cells.
        FASEB J. 2003; 17: 1886-1888
        • Hirano K.
        • Roth J.
        • Zuber C.
        • et al.
        Expression of a mutant ER-retained polytope membrane protein in cultured rat hepatocytes results in Mallory body formation.
        Histochem Cell Biol. 2002; 117: 41-53
        • Asai T.
        • Kuwahara M.
        • Kurihara H.
        • et al.
        Pathogenesis of nephrogenic diabetes insipidus by aquaporin-2 C-terminus mutations.
        Kidney Int. 2003; 64: 2-10
        • Heilker R.
        • Spiess M.
        • Crottet P.
        Recognition of sorting signals by clathrin adaptors.
        Bioessays. 1999; 21: 558-567
        • Kamsteeg E.J.
        • Savelkoul P.J.
        • Hendriks G.
        • et al.
        Missorting of the aquaporin-2 mutant E258K to multivesicular bodies/lysosomes in dominant NDI is associated with its monoubiquitination and increased phosphorylation by PKC but is due to the loss of E258.
        Pflugers Arch. 2007; 455: 1041-1054
        • Kamsteeg E.J.
        • Hendriks G.
        • Boone M.
        • et al.
        Short-chain ubiquitination mediates the regulated endocytosis of the aquaporin-2 water channel.
        Proc Natl Acad Sci U S A. 2006; 103: 18344-18349
        • De Mattia F.
        • Savelkoul P.J.
        • Kamsteeg E.J.
        • et al.
        Lack of arginine vasopressin-induced phosphorylation of aquaporin-2 mutant AQP2-R254L explains dominant nephrogenic diabetes insipidus.
        J Am Soc Nephrol. 2005; 16: 2872-2880
        • Rojek A.
        • Fuchtbauer E.M.
        • Kwon T.H.
        • et al.
        Severe urinary concentrating defect in renal collecting duct-selective AQP2 conditional-knockout mice.
        Proc Natl Acad Sci U S A. 2006; 103: 6037-6042
        • Lloyd D.J.
        • Hall F.W.
        • Tarantino L.M.
        • et al.
        Diabetes insipidus in mice with a mutation in aquaporin-2.
        PLoS Genet. 2005; 1: e20
        • Sohara E.
        • Rai T.
        • Yang S.S.
        • et al.
        Pathogenesis and treatment of autosomal-dominant nephrogenic diabetes insipidus caused by an aquaporin 2 mutation.
        Proc Natl Acad Sci U S A. 2006; 103: 14217-14222
        • McDill B.W.
        • Li S.Z.
        • Kovach P.A.
        • et al.
        Congenital progressive hydronephrosis (cph) is caused by an S256L mutation in aquaporin-2 that affects its phosphorylation and apical membrane accumulation.
        Proc Natl Acad Sci U S A. 2006; 103: 6952-6957
        • Shi P.P.
        • Cao X.R.
        • Qu J.
        • et al.
        Nephrogenic diabetes insipidus in mice caused by deleting COOH-terminal tail of aquaporin-2.
        Am J Physiol Renal Physiol. 2007; 292: F1334-F1344
        • Zender H.O.
        • Ruedin P.
        • Moser F.
        • et al.
        Traumatic rupture of the urinary tract in a patient presenting nephrogenic diabetes insipidus associated with hydronephrosis and chronic renal failure: case report and review of the literature.
        Clin Nephrol. 1992; 38: 196-202
        • Deen P.M.
        Mouse models for congenital nephrogenic diabetes insipidus: what can we learn from them?.
        Nephrol Dial Transplant. 2007; 22: 1023-1026
        • Earley LE K.A.H.N.M.
        • Orloff J.
        The effects of infusions of chlorothiazide on urinary dilution and concentration in the dog.
        J Clin Invest. 1961; 40: 857-866
        • Kirchlechner V.
        • Koller D.Y.
        • Seidl R.
        • et al.
        Treatment of nephrogenic diabetes insipidus with hydrochlorothiazide and amiloride.
        Arch Dis Child. 1999; 80: 548-552
        • Alon U.
        • Chan J.C.
        Hydrochlorothiazide-amiloride in the treatment of congenital nephrogenic diabetes insipidus.
        Am J Nephrol. 1985; 5: 9-13
        • Jakobsson B.
        • Berg U.
        Effect of hydrochlorothiazide and indomethacin treatment on renal function in nephrogenic diabetes insipidus.
        Acta Paediatr. 1994; 83: 522-525
        • Konoshita T.
        • Kuroda M.
        • Kawane T.
        • et al.
        Treatment of congenital nephrogenic diabetes insipidus with hydrochlorothiazide and amiloride in an adult patient.
        Horm Res. 2004; 61: 63-67
        • Rascher W.
        • Rosendahl W.
        • Henrichs I.A.
        • et al.
        Congenital nephrogenic diabetes insipidus-vasopressin and prostaglandins in response to treatment with hydrochlorothiazide and indomethacin.
        Pediatr Nephrol. 1987; 1: 485-490
        • Morello J.P.
        • Salahpour A.
        • Laperriere A.
        • et al.
        Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants.
        J Clin Invest. 2000; 105: 887-895
        • Bernier V.
        • Lagace M.
        • Lonergan M.
        • et al.
        Functional rescue of the constitutively internalized V2 vasopressin receptor mutant R137H by the pharmacological chaperone action of SR49059.
        Mol Endocrinol. 2004; 18: 2074-2084
        • Robben J.H.
        • Sze M.
        • Knoers N.V.
        • et al.
        Functional rescue of vasopressin V2 receptor mutants in MDCK cells by pharmacochaperones: relevance to therapy of nephrogenic diabetes insipidus.
        Am J Physiol Renal Physiol. 2007; 292: F253-F260
        • Robben J.H.
        • Knoers N.V.
        • Deen P.M.
        Cell biological aspects of the vasopressin type-2 receptor and aquaporin 2 water channel in nephrogenic diabetes insipidus.
        Am J Physiol Renal Physiol. 2006; 291: F257-F270
        • Hirano K.
        • Zuber C.
        • Roth J.
        • et al.
        The proteasome is involved in the degradation of different aquaporin-2 mutants causing nephrogenic diabetes insipidus.
        Am J Pathol. 2003; 163: 111-120
        • Lin S.H.
        • Bichet D.G.
        • Sasaki S.
        • et al.
        Two novel aquaporin-2 mutations responsible for congenital nephrogenic diabetes insipidus in Chinese families.
        J Clin Endocrinol Metab. 2002; 87: 2694-2700
        • Tajima T.
        • Okuhara K.
        • Satoh K.
        • et al.
        Two novel aquaporin-2 mutations in a sporadic Japanese patient with autosomal recessive nephrogenic diabetes insipidus.
        Endocr J. 2003; 50: 473-476
        • Vargas-Poussou R.
        • Forestier L.
        • Dautzenberg M.D.
        • et al.
        Mutations in the vasopressin V2 receptor and aquaporin-2 genes in twelve families with congenital nephrogenic diabetes insipidus.
        Adv Exp Med Biol. 1998; 449: 387-390
        • Carroll P.
        • Al-Mojalli H.
        • Al-Abbad A.
        • et al.
        Novel mutations underlying nephrogenic diabetes insipidus in Arab families.
        Genet Med. 2006; 8: 443-447
        • Hochberg Z.
        • van Lieburg A.F.
        • Even L.
        • et al.
        Autosomal recessive nephrogenic diabetes insipidus caused by an aquaporin-2 mutation.
        J Clin Endocrinol Metab. 1997; 82: 686-689
        • Goji K.
        • Kuwahara M.
        • Gu Y.
        • et al.
        Novel mutations in aquaporin-2 gene in female siblings with nephrogenic diabetes insipidus: evidence of disrupted water channel function.
        J Clin Endocrinol Metab. 1998; 83: 3205-3209
        • Kuwahara M.
        Aquaporin-2, a vasopressin-sensitive water channel, and nephrogenic diabetes insipidus.
        Intern Med. 1998; 37: 215-217
        • Li C.
        • Wang W.
        • Kwon T.H.
        • et al.
        Altered expression of major renal Na transporters in rats with unilateral ureteral obstruction.
        Am J Physiol Renal Physiol. 2003; 284: F155-F166
      1. Guyon C, Bissonnette P, Lussier Y, et al. Novel aquaporin-2 (AQP2) mutations responsible for autosomal recessive nephrogenic diabetes insipidus [abstract]. J Am Soc Nephrol. 2004.

        • Iolascon A.
        • Aglio V.
        • Tamma G.
        • et al.
        Characterization of two novel missense mutations in the AQP2 gene causing nephrogenic diabetes insipidus.
        Nephron Physiol. 2007; 105: 33-41
        • Moses A.M.
        • Scheinman S.J.
        • Oppenheim A.
        Marked hypotonic polyuria resulting from nephrogenic diabetes insipidus with partial sensitivity to vasopressin.
        J Clin Endocrinol Metab. 1984; 59: 1044-1049
        • Oksche A.
        • Moller A.
        • Dickson J.
        • et al.
        Two novel mutations in the aquaporin-2 and the vasopressin V2 receptor genes in patients with congenital nephrogenic diabetes insipidus.
        Hum Genet. 1996; 98: 587-589