Advertisement
Research Article| Volume 28, ISSUE 3, P266-278, May 2008

Download started.

Ok

Bypassing Vasopressin Receptor Signaling Pathways in Nephrogenic Diabetes Insipidus

  • Richard Bouley
    Affiliations
    Massachusetts General Hospital-Center for Systems Biology, Program in Membrane Biology and Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA.
    Search for articles by this author
  • Udo Hasler
    Affiliations
    Massachusetts General Hospital-Center for Systems Biology, Program in Membrane Biology and Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA.
    Search for articles by this author
  • Hua A.J. Lu
    Affiliations
    Massachusetts General Hospital-Center for Systems Biology, Program in Membrane Biology and Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA.
    Search for articles by this author
  • Paula Nunes
    Affiliations
    Massachusetts General Hospital-Center for Systems Biology, Program in Membrane Biology and Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA.
    Search for articles by this author
  • Dennis Brown
    Correspondence
    Address reprint requests to Dr. Dennis Brown, Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, Simches Research Bldg Suite 8202, Boston, MA 02114.
    Affiliations
    Massachusetts General Hospital-Center for Systems Biology, Program in Membrane Biology and Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA.
    Search for articles by this author

      Summary

      Water reabsorption in the kidney represents a critical physiological event in the maintenance of body water homeostasis. This highly regulated process relies largely on vasopressin (VP) action and on the VP-sensitive water channel (AQP2) that is expressed in principal cells of the kidney collecting duct. Defects in the VP signaling pathway and/or in AQP2 cell surface expression can lead to an inappropriate reduction in renal water reabsorption and the development of nephrogenic diabetes insipidus, a disease characterized by polyuria and polydipsia. This review focuses on the major regulatory steps that are involved in AQP2 trafficking and function. Specifically, we begin with a discussion on VP-receptor–independent mechanisms of AQP2 trafficking, with special emphasis on the nitric oxide–cyclic guanosine monophosphate signaling pathway, followed by a review of the mechanisms that govern AQP2 endocytosis and exocytosis. We then discuss emerging data illustrating roles played by the actin cytoskeleton on AQP2 trafficking, and lastly we consider elements that affect AQP2 protein expression in cells. Recent advances in each topic are summarized and are presented in the context of their potential to serve as a basis for the development of novel therapies that may ultimately improve life quality of nephrogenic diabetes insipidus patients.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Nephrology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Deen P.M.
        Mouse models for congenital nephrogenic diabetes insipidus: what can we learn from them?.
        Nephrol Dial Transplant. 2007; 22: 1023-1026
        • Wade J.B.
        • Stetson D.L.
        • Lewis S.A.
        ADH action: evidence for a membrane shuttle mechanism.
        Ann NY Acad Sci. 1981; 372: 107-117
        • Kamsteeg E.J.
        • Heijnen I.
        • van Os C.H.
        • et al.
        The subcellular localization of an aquaporin-2 tetramer depends on the stoichiometry of phosphorylated and nonphosphorylated monomers.
        J Cell Biol. 2000; 151: 919-930
        • Yip K.P.
        Coupling of vasopressin-induced intracellular Ca2+ mobilization and apical exocytosis in perfused rat kidney collecting duct.
        J Physiol. 2002; 538: 891-899
        • Nickols H.H.
        • Shah V.N.
        • Chazin W.J.
        • et al.
        Calmodulin interacts with the V2 vasopressin receptor: elimination of binding to the C terminus also eliminates arginine vasopressin-stimulated elevation of intracellular calcium.
        J Biol Chem. 2004; 279: 46969-46980
        • Robben J.H.
        • Knoers N.V.
        • Deen P.M.
        Cell biological aspects of the vasopressin type-2 receptor and aquaporin 2 water channel in nephrogenic diabetes insipidus.
        Am J Physiol Renal Physiol. 2006; 291: F257-F270
        • Morello J.P.
        • Salahpour A.
        • Laperriere A.
        • et al.
        Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants.
        J Clin Invest. 2000; 105: 887-895
        • Schulz A.
        • Sangkuhl K.
        • Lennert T.
        • et al.
        Aminoglycoside pretreatment partially restores the function of truncated V(2) vasopressin receptors found in patients with nephrogenic diabetes insipidus.
        J Clin Endocrinol Metab. 2002; 87: 5247-5257
        • Deen P.T.P.
        Mouse models for congenital nephrogenic diabetes insipidus: what can we learn from them?.
        Nephrol Dial Transplant. 2007; 22: 1023-1026
      1. Bichet DG, Ruel N, Arthus MF, et al. Rolipram, a phosphodiesterase inhibitor, in the treatment of two male patients with congenital nephrogenic diabetes insipidus. Nephron. 56:449-50.

        • Oliveira C.J.
        • Schindler F.
        • Ventura A.M.
        • et al.
        Nitric oxide and cGMP activate the Ras-MAP kinase pathway-stimulating protein tyrosine phosphorylation in rabbit aortic endothelial cells.
        Free Radic Biol Med. 2003; 35: 381-396
        • Yamada T.
        • Matsuda K.
        • Uchiyama M.
        Atrial natriuretic peptide and cGMP activate sodium transport through PKA-dependent pathway in the urinary bladder of the Japanese tree frog.
        J Comp Physiol [B]. 2006; 176: 203-212
        • Anthony T.L.
        • Brooks H.L.
        • Boassa D.
        • et al.
        Cloned human aquaporin-1 is a cyclic GMP-gated ion channel.
        Mol Pharmacol. 2000; 57: 576-588
        • Das S.
        • Garepapaghi M.
        • Palmer L.G.
        Stimulation by cGMP of apical Na channels and cation channels in toad urinary bladder.
        Am J Physiol Cell Physiol. 1991; 260: C234-C241
        • Etgen Jr, G.J.
        • Fryburg D.A.
        • Gibbs E.M.
        Nitric oxide stimulates skeletal muscle glucose transport through a calcium/contraction- and phosphatidylinositol-3-kinase-independent pathway.
        Diabetes. 1997; 46: 1915-1919
        • Ishikawa Y.
        • Iida H.
        • Ishida H.
        The muscarinic acetylcholine receptor-stimulated increase in aquaporin-5 levels in the apical plasma membrane in rat parotid acinar cells is coupled with activation of nitric oxide/cGMP signal transduction.
        Mol Pharmacol. 2002; 61: 1423-1434
        • Garcia N.H.
        • Stoos B.A.
        • Carretero O.A.
        • et al.
        Mechanism of the nitric oxide-induced blockade of collecting duct water permeability.
        Hypertension. 1996; 27: 679-683
        • Hirsch J.R.
        • Cermak R.
        • Forssmann W.G.
        • et al.
        Effects of sodium nitroprusside in the rat cortical collecting duct are independent of the NO pathway.
        Kidney Int. 1997; 51: 473-476
        • Ortiz P.A.
        • Garvin J.L.
        Role of nitric oxide in the regulation of nephron transport.
        Am J Physiol Renal Physiol. 2002; 282: F777-F784
        • Martin P.Y.
        • Bianchi M.
        • Roger F.
        • et al.
        Arginine vasopressin modulates expression of neuronal NOS in rat renal medulla.
        Am J Physiol Renal Physiol. 2002; 283: F559-F568
        • Shin S.J.
        • Lai F.J.
        • Wen J.D.
        • et al.
        Increased nitric oxide synthase mRNA expression in the renal medulla of water-deprived rats.
        Kidney Int. 1999; 56: 2191-2202
        • Morishita T.
        • Tsutsui M.
        • Shimokawa H.
        • et al.
        Nephrogenic diabetes insipidus in mice lacking all nitric oxide synthase isoforms.
        Proc Natl Acad Sci U S A. 2005; 102: 10616-10621
        • Pilz R.B.
        • Casteel D.E.
        Regulation of gene expression by cyclic GMP.
        Circ Res. 2003; 93: 1034-1046
        • Bouley R.
        • Breton S.
        • Sun T.
        • et al.
        Nitric oxide and atrial natriuretic factor stimulate cGMP-dependent membrane insertion of aquaporin 2 in renal epithelial cells.
        J Clin Invest. 2000; 106: 1115-1126
        • Wang W.
        • Li C.
        • Nejsum L.N.
        • et al.
        Biphasic effects of ANP infusion in conscious, euvolumic rats: roles of AQP2 and ENaC trafficking.
        Am J Physiol Renal Physiol. 2006; 290: F530-F541
        • Bouley R.
        • Pastor-Soler N.
        • Cohen O.
        • et al.
        Stimulation of AQP2 membrane insertion in renal epithelial cells in vitro and in vivo by the cGMP phosphodiesterase inhibitor sildenafil citrate (Viagra).
        Am J Physiol Renal Physiol. 2005; 288: F1103-F1112
        • Brodsky F.M.
        • Chen C.Y.
        • Knuehl C.
        • et al.
        Biological basket weaving: formation and function of clathrin-coated vesicles.
        Annu Rev Cell Dev Biol. 2001; 17: 517-568
        • Conner S.D.
        • Schmid S.L.
        Regulated portals of entry into the cell.
        Nature. 2003; 422: 37-44
        • Brown D.
        • Orci L.
        Vasopressin stimulates formation of coated pits in rat kidney collecting ducts.
        Nature. 1983; 302: 253-255
        • Sun T.X.
        • Van Hoek A.
        • Huang Y.
        • et al.
        Aquaporin-2 localization in clathrin-coated pits: inhibition of endocytosis by dominant-negative dynamin.
        Am J Physiol Renal Physiol. 2002; 282: F998-F1011
        • Lu H.A.
        • Sun T.X.
        • Matsuzaki T.
        • et al.
        Heat shock protein 70 interacts with aquaporin-2 and regulates its trafficking.
        J Biol Chem. 2007; 282: 28721-28732
        • Kamsteeg E.J.
        • Duffield A.S.
        • Konings I.B.
        • et al.
        MAL decreases the internalization of the aquaporin-2 water channel.
        Proc Natl Acad Sci U S A. 2007; 104: 16696-16701
        • Nejsum L.N.
        • Zelenina M.
        • Aperia A.
        • et al.
        Bidirectional regulation of AQP2 trafficking and recycling: involvement of AQP2-S256 phosphorylation.
        Am J Physiol Renal Physiol. 2005; 288: F930-F938
        • Procino G.
        • Carmosino M.
        • Marin O.
        • et al.
        Ser-256 phosphorylation dynamics of aquaporin 2 during maturation from the ER to the vesicular compartment in renal cells.
        FASEB J. 2003; 17: 1886-1888
        • Lu H.
        • Sun T.X.
        • Bouley R.
        • et al.
        Inhibition of endocytosis causes phosphorylation (S256)-independent plasma membrane accumulation of AQP2.
        Am J Physiol Renal Physiol. 2004; 286: F233-F243
        • Russo L.M.
        • McKee M.
        • Brown D.
        Methyl-beta-cyclodextrin induces vasopressin-independent apical accumulation of aquaporin-2 in the isolated, perfused rat kidney.
        Am J Physiol Renal Physiol. 2006; 291: F246-F253
        • Christensen B.M.
        • Zelenina M.
        • Aperia A.
        • et al.
        Localization and regulation of PKA-phosphorylated AQP2 in response to V(2)-receptor agonist/antagonist treatment.
        Am J Physiol Renal Physiol. 2000; 278: F29-F42
        • Bouley R.
        • Hawthorn G.
        • Russo L.M.
        • et al.
        Aquaporin 2 (AQP2) and vasopressin type 2 receptor (V2R) endocytosis in kidney epithelial cells: AQP2 is located in ‘endocytosis-resistant’ membrane domains after vasopressin treatment.
        Biol Cell. 2006; 98: 215-232
        • Knepper M.A.
        • Nielsen S.
        Kinetic model of water and urea permeability regulation by vasopressin in collecting duct.
        Am J Physiol Renal Physiol. 1993; 265: F214-F224
        • Fushimi K.
        • Sasaki S.
        • Marumo F.
        Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel.
        J Biol Chem. 1997; 272: 14800-14804
        • Katsura T.
        • Gustafson C.E.
        • Ausiello D.A.
        Protein kinase A phosphorylation is involved in regulated exocytosis of aquaporin-2 in transfected LLC-PK1 cells.
        Am J Physiol Renal Physiol. 1997; 272: F817-F822
        • Stefan E.
        • Wiesner B.
        • Baillie G.S.
        • et al.
        Compartmentalization of cAMP-dependent signaling by phosphodiesterase-4D is involved in the regulation of vasopressin-mediated water reabsorption in renal principal cells.
        J Am Soc Nephrol. 2007; 18: 199-212
        • Brown D.
        The ins and outs of aquaporin-2 trafficking.
        Am J Physiol Renal Physiol. 2003; 284: F893-F901
        • Tobert J.A.
        Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors.
        Nat Rev Drug Discov. 2003; 2: 517-526
        • Sidaway J.E.
        • Davidson R.G.
        • McTaggart F.
        • et al.
        Inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase reduce receptor-mediated endocytosis in opossum kidney cells.
        J Am Soc Nephrol. 2004; 15: 2258-2265
        • Verhulst A.
        • D'Haese P.C.
        • De Broe M.E.
        Inhibitors of HMG-CoA reductase reduce receptor-mediated endocytosis in human kidney proximal tubular cells.
        J Am Soc Nephrol. 2004; 15: 2249-2257
        • McFarlane S.I.
        • Muniyappa R.
        • Francisco R.
        • et al.
        Clinical review 145: pleiotropic effects of statins: lipid reduction and beyond.
        J Clin Endocrinol Metab. 2002; 87: 1451-1458
        • Fried L.F.
        • Orchard T.J.
        • Kasiske B.L.
        Effect of lipid reduction on the progression of renal disease: a meta-analysis.
        Kidney Int. 2001; 59: 260-269
        • Kureishi Y.
        • Luo Z.
        • Shiojima I.
        • et al.
        The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals.
        Nat Med. 2000; 6: 1004-1010
        • Urbich C.
        • Dernbach E.
        • Zeiher A.M.
        • et al.
        Double-edged role of statins in angiogenesis signaling.
        Circ Res. 2002; 90: 737-744
        • Laufs U.
        • La Fata V.
        • Plutzky J.
        • et al.
        Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors.
        Circulation. 1998; 97: 1129-1135
        • Park H.J.
        • Kong D.
        • Iruela-Arispe L.
        • et al.
        3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors interfere with angiogenesis by inhibiting the geranylgeranylation of RhoA.
        Circ Res. 2002; 91: 143-150
        • Tamma G.
        • Klussmann E.
        • Maric K.
        • et al.
        Rho inhibits cAMP-induced translocation of aquaporin-2 into the apical membrane of renal cells.
        Am J Physiol Renal Physiol. 2001; 281: F1092-F1101
        • Klussmann E.
        • Maric K.
        • Wiesner B.
        • et al.
        Protein kinase A anchoring proteins are required for vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells.
        J Biol Chem. 1999; 274: 4934-4938
        • Klussmann E.
        • Tamma G.
        • Lorenz D.
        • et al.
        An inhibitory role of Rho in the vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells.
        J Biol Chem. 2001; 276: 20451-20457
        • Tamma G.
        • Klussmann E.
        • Procino G.
        • et al.
        cAMP-induced AQP2 translocation is associated with RhoA inhibition through RhoA phosphorylation and interaction with RhoGDI.
        J Cell Sci. 2003; 116: 1519-1525
        • Noda Y.
        • Sasaki S.
        Regulation of aquaporin-2 trafficking and its binding protein complex.
        Biochim Biophys Acta. 2006; 1758: 1117-1125
        • Cox R.A.
        • Kanagalingam K.
        A spectrophotometric study of the denaturation of deoxyribonucleic acid in the presence of urea or formaldehyde and its relevance to the secondary structure of single-stranded polynucleotides.
        Biochem J. 1968; 108: 599-610
        • Kotnik P.
        • Nielsen J.
        • Kwon T.H.
        • et al.
        Altered expression of COX-1, COX-2, and mPGES in rats with nephrogenic and central diabetes insipidus.
        Am J Physiol Renal Physiol. 2005; 288: F1053-F1068
        • Rao R.
        • Zhang M.Z.
        • Zhao M.
        • et al.
        Lithium treatment inhibits renal GSK-3 activity and promotes cyclooxygenase 2-dependent polyuria.
        Am J Physiol Renal Physiol. 2005; 288: F642-F649
        • Pattaragarn A.
        • Alon U.S.
        Treatment of congenital nephrogenic diabetes insipidus by hydrochlorothiazide and cyclooxygenase-2 inhibitor.
        Pediatr Nephrol. 2003; 18: 1073-1076
        • Johnsen S.P.
        • Larsson H.
        • Tarone R.E.
        • et al.
        Risk of hospitalization for myocardial infarction among users of rofecoxib, celecoxib, and other NSAIDs: a population-based case-control study.
        Arch Intern Med. 2005; 165: 978-984
        • Samuelsson B.
        • Morgenstern R.
        • Jakobsson P.J.
        Membrane prostaglandin E synthase-1: a novel therapeutic target.
        Pharmacol Rev. 2007; 59: 207-224
        • Takeuchi K.
        • Takahashi N.
        • Abe T.
        • et al.
        Two isoforms of the rat kidney EP3 receptor derived by alternative RNA splicing: intrarenal expression co-localization.
        Biochem Biophys Res Commun. 1994; 199: 834-840
        • Makino H.
        • Tanaka I.
        • Mukoyama M.
        • et al.
        Prevention of diabetic nephropathy in rats by prostaglandin E receptor EP1-selective antagonist.
        J Am Soc Nephrol. 2002; 13: 1757-1765
        • Tamma G.
        • Carmosino M.
        • Svelto M.
        • et al.
        Bradykinin signaling counteracts cAMP-elicited aquaporin 2 translocation in renal cells.
        J Am Soc Nephrol. 2005; 16: 2881-2889
        • Leeb-Lundberg L.M.
        • Marceau F.
        • Muller-Esterl W.
        • et al.
        International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences.
        Pharmacol Rev. 2005; 57: 27-77
        • Fukuhara S.
        • Sakurai A.
        • Sano H.
        • et al.
        Cyclic AMP potentiates vascular endothelial cadherin-mediated cell-cell contact to enhance endothelial barrier function through an Epac-Rap1 signaling pathway.
        Mol Cell Biol. 2005; 25: 136-146
        • Procino G.
        • Carmosino M.
        • Tamma G.
        • et al.
        Extracellular calcium antagonizes forskolin-induced aquaporin 2 trafficking in collecting duct cells.
        Kidney Int. 2004; 66: 2245-2255
        • Li Y.
        • Shaw S.
        • Kamsteeg E.J.
        • et al.
        Development of lithium-induced nephrogenic diabetes insipidus is dissociated from adenylyl cyclase activity.
        J Am Soc Nephrol. 2006; 17: 1063-1072
        • Norregaard R.
        • Jensen B.L.
        • Li C.
        • et al.
        COX-2 inhibition prevents downregulation of key renal water and sodium transport proteins in response to bilateral ureteral obstruction.
        Am J Physiol Renal Physiol. 2005; 289: F322-F333
        • Fushimi K.
        • Uchida S.
        • Hara Y.
        • et al.
        Cloning and expression of apical membrane water channel of rat kidney collecting tubule.
        Nature. 1993; 361: 549-552
        • Nielsen S.
        • DiGiovanni S.R.
        • Christensen E.I.
        • et al.
        Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney.
        Proc Natl Acad Sci U S A. 1993; 90: 11663-11667
        • Yasui M.
        • Zelenin S.M.
        • Celsi G.
        • et al.
        Adenylate cyclase-coupled vasopressin receptor activates AQP2 promoter via a dual effect on CRE and AP1 elements.
        Am J Physiol Renal Physiol. 1997; 272: F443-F450
        • Hozawa S.
        • Holtzman E.J.
        • Ausiello D.A.
        cAMP motifs regulating transcription in the aquaporin-2 gene.
        Am J Physiol Cell Physiol. 1996; 270: C1695-C1702
        • Frokiaer J.
        • Marples D.
        • Valtin H.
        • et al.
        Low aquaporin-2 levels in polyuric DI +/+ severe mice with constitutively high cAMP-phosphodiesterase activity.
        Am J Physiol Renal Physiol. 1999; 276: F179-F190
        • Hasler U.
        • Jeon U.S.
        • Kim J.A.
        • et al.
        Tonicity-responsive enhancer binding protein is an essential regulator of aquaporin-2 expression in renal collecting duct principal cells.
        J Am Soc Nephrol. 2006; 17: 1521-1531
        • Li S.Z.
        • McDill B.W.
        • Kovach P.A.
        • et al.
        Calcineurin-NFATc signaling pathway regulates AQP2 expression in response to calcium signals and osmotic stress.
        Am J Physiol Cell Physiol. 2007; 292: C1606-C1616
        • Hasler U.
        • Mordasini D.
        • Bens M.
        • et al.
        Long term regulation of aquaporin-2 expression in vasopressin-responsive renal collecting duct principal cells.
        J Biol Chem. 2002; 277: 10379-10386
        • Hasler U.
        • Nielsen S.
        • Feraille E.
        • et al.
        Posttranscriptional control of aquaporin-2 abundance by vasopressin in renal collecting duct principal cells.
        Am J Physiol Renal Physiol. 2006; 290: F177-F187
        • Puliyanda D.P.
        • Ward D.T.
        • Baum M.A.
        • et al.
        Calpain-mediated AQP2 proteolysis in inner medullary collecting duct.
        Biochem Biophys Res Commun. 2003; 303: 52-58
        • Wilke C.
        • Sheriff S.
        • Soleimani M.
        • et al.
        Vasopressin-independent regulation of collecting duct aquaporin-2 in food deprivation.
        Kidney Int. 2005; 67: 201-216
        • Hasler U.
        • Mordasini D.
        • Bianchi M.
        • et al.
        Dual influence of aldosterone on AQP2 expression in cultured renal collecting duct principal cells.
        J Biol Chem. 2003; 278: 21639-21648