Advertisement
Research Article| Volume 32, ISSUE 2, P199-207, March 2012

The Endothelium in Diabetic Nephropathy

      Summary

      The long-term complications of diabetes are characterized by pathologic changes in both the microvasculature and conduit vessels. Although the fenestrated glomerular endothelium classically has been viewed as providing little in the way of an impediment to macromolecular flow, increasing evidence illustrates that this is not the case. Rather, hyperglycemia-mediated endothelial injury may predispose to albuminuria in diabetes both through direct effects and through bidirectional communication with neighboring podocytes. Although neo-angiogenesis of the glomerular capillaries may be a feature of early diabetes, particularly in the experimental setting, loss of capillaries in the glomerulus and in the interstitium are key events that each correlate closely with declining glomerular filtration rate in patients with diabetic nephropathy. The hypoxic milieu that follows the microvascular rarefaction provides a potent stimulus for fibrogenesis, leading to the glomerulosclerosis and tubulointerstitial fibrosis that characterize advanced diabetic kidney disease. Given the pivotal role the endothelium plays in both the development and the progression of diabetic nephropathy we need effective strategies that prevent its loss or accelerate its regeneration. Such advances likely will lead not only to improved tissue oxygenation and reduced fibrosis, but also to improved long-term renal function.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Nephrology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • U.S.Renal Data System
        USRDS 2009 annual data report: atlas of end-stage renal disease.
        National Institutes of Health, National Institute of Diabetes and digestive and Kidney Diseases, Bethesda, MD2009
        • Lewis E.J.
        • Hunsicker L.G.
        • Bain R.P.
        • Rohde R.D.
        The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy.
        N Engl J Med. 1993; 329: 1456-1462
        • Perkins B.A.
        • Ficociello L.H.
        • Ostrander B.E.
        • Silva K.H.
        • Weinberg J.
        • Warram J.H.
        • et al.
        Microalbuminuria and the risk for early progressive renal function decline in type 1 diabetes.
        J Am Soc Nephrol. 2007; 18: 1353-1361
        • Perkins B.A.
        • Ficociello L.H.
        • Roshan B.
        • Warram J.H.
        • Krolewski A.S.
        In patients with type 1 diabetes and new-onset microalbuminuria the development of advanced chronic kidney disease may not require progression to proteinuria.
        Kidney Int. 2010; 77: 57-64
        • Gerstein H.C.
        • Mann J.F.
        • Yi Q.
        • Zinman B.
        • Dinneen S.F.
        • Hoogwerf B.
        • et al.
        Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals.
        JAMA. 2001; 286: 421-426
        • Jensen T.
        • Bjerre-Knudsen J.
        • Feldt-Rasmussen B.
        • Deckert T.
        Features of endothelial dysfunction in early diabetic nephropathy.
        Lancet. 1989; 1: 461-463
        • Deckert T.
        • Feldt-Rasmussen B.
        • Borch-Johnsen K.
        • Jensen T.
        • Kofoed-Enevoldsen A.
        Albuminuria reflects widespread vascular damage.
        Diabetologia. 1989; 32: 219-226
        • Feldt-Rasmussen B.
        Increased transcapillary escape rate of albumin in type 1 (insulin-dependent) diabetic patients with microalbuminuria.
        Diabetologia. 1986; 29: 282-286
        • Nannipieri M.
        • Rizzo L.
        • Rapuano A.
        • Pilo A.
        • Penno G.
        • Navalesi R.
        Increased transcapillary escape rate of albumin in microalbuminuric type II diabetic patients.
        Diabetes Care. 1995; 18: 1-9
        • Lenkkeri U.
        • Mannikko M.
        • McCready P.
        • Lamerdin J.
        • Gribouval O.
        • Niaudet P.M.
        • et al.
        Structure of the gene for congenital nephrotic syndrome of the finnish type (NPHS1) and characterization of mutations.
        Am J Hum Genet. 1999; 64: 51-61
        • Wolf G.
        • Chen S.
        • Ziyadeh F.N.
        From the periphery of the glomerular capillary wall toward the center of disease: podocyte injury comes of age in diabetic nephropathy.
        Diabetes. 2005; 54: 1626-1634
        • Deen W.M.
        • Lazzara M.J.
        • Myers B.D.
        Structural determinants of glomerular permeability.
        Am J Physiol Renal Physiol. 2001; 281: F579-F596
        • Lane P.H.
        • Steffes M.W.
        • Mauer S.M.
        Glomerular structure in IDDM women with low glomerular filtration rate and normal urinary albumin excretion.
        Diabetes. 1992; 41: 581-586
        • Jefferson J.A.
        • Shankland S.J.
        • Pichler R.H.
        Proteinuria in diabetic kidney disease: a mechanistic viewpoint.
        Kidney Int. 2008; 74: 22-36
        • Ballermann B.J.
        Contribution of the endothelium to the glomerular permselectivity barrier in health and disease.
        Nephron Physiol. 2007; 106: 19-25
        • Ryan G.B.
        • Karnovsky M.J.
        Distribution of endogenous albumin in the rat glomerulus: role of hemodynamic factors in glomerular barrier function.
        Kidney Int. 1976; 9: 36-45
        • Hjalmarsson C.
        • Johansson B.R.
        • Haraldsson B.
        Electron microscopic evaluation of the endothelial surface layer of glomerular capillaries.
        Microvasc Res. 2004; 67: 9-17
        • Rostgaard J.
        • Qvortrup K.
        Electron microscopic demonstrations of filamentous molecular sieve plugs in capillary fenestrae.
        Microvasc Res. 1997; 53: 1-13
        • Jeansson M.
        • Haraldsson B.
        Morphological and functional evidence for an important role of the endothelial cell glycocalyx in the glomerular barrier.
        Am J Physiol Renal Physiol. 2006; 290: F111-F116
        • Levine R.J.
        • Lam C.
        • Qian C.
        • Yu K.F.
        • Maynard S.E.
        • Sachs B.P.
        • et al.
        Soluble endoglin and other circulating antiangiogenic factors in preeclampsia.
        N Engl J Med. 2006; 355: 992-1005
        • Maynard S.E.
        • Min J.Y.
        • Merchan J.
        • Lim K.H.
        • Li J.
        • Mondal S.
        • et al.
        Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia.
        J Clin Invest. 2003; 111: 649-658
        • Eremina V.
        • Jefferson J.A.
        • Kowalewska J.
        • Hochster H.
        • Haas M.
        • Weisstuch J.
        • et al.
        VEGF inhibition and renal thrombotic microangiopathy.
        N Engl J Med. 2008; 358: 1129-1136
        • Advani A.
        • Kelly D.J.
        • Advani S.L.
        • Cox A.J.
        • Thai K.
        • Zhang Y.
        • et al.
        Role of VEGF in maintaining renal structure and function under normotensive and hypertensive conditions.
        Proc Natl Acad Sci U S A. 2007; 104: 14448-14453
        • De Vriese A.S.
        • Verbeuren T.J.
        • Van de Voorde J.
        • Lameire N.H.
        • Vanhoutte P.M.
        Endothelial dysfunction in diabetes.
        Br J Pharmacol. 2000; 130: 963-974
        • Chan W.B.
        • Chan N.N.
        • Lai C.W.
        • So W.Y.
        • Lo M.K.
        • Lee K.F.
        • et al.
        Vascular defect beyond the endothelium in type II diabetic patients with overt nephropathy and moderate renal insufficiency.
        Kidney Int. 2006; 70: 711-716
        • Brownlee M.
        Biochemistry and molecular cell biology of diabetic complications.
        Nature. 2001; 414: 813-820
        • Toyoda M.
        • Najafian B.
        • Kim Y.
        • Caramori M.L.
        • Mauer M.
        Podocyte detachment and reduced glomerular capillary endothelial fenestration in human type 1 diabetic nephropathy.
        Diabetes. 2007; 56: 2155-2160
        • Ferrara N.
        • Davis-Smyth T.
        The biology of vascular endothelial growth factor.
        Endocr Rev. 1997; 18: 4-25
        • Senger D.R.
        • Galli S.J.
        • Dvorak A.M.
        • Perruzzi C.A.
        • Harvey V.S.
        • Dvorak H.F.
        Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid.
        Science. 1983; 219: 983-985
        • Zeng H.
        • Sanyal S.
        • Mukhopadhyay D.
        Tyrosine residues 951 and 1059 of vascular endothelial growth factor receptor-2 (KDR) are essential for vascular permeability factor/vascular endothelial growth factor-induced endothelium migration and proliferation, respectively.
        J Biol Chem. 2001; 276: 32714-32719
        • Cooper M.E.
        • Vranes D.
        • Youssef S.
        • Stacker S.A.
        • Cox A.J.
        • Rizkalla B.
        • et al.
        Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in experimental diabetes.
        Diabetes. 1999; 48: 2229-2239
        • Eremina V.
        • Sood M.
        • Haigh J.
        • Nagy A.
        • Lajoie G.
        • Ferrara N.
        • et al.
        Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases.
        J Clin Invest. 2003; 111: 707-716
        • Cha D.R.
        • Kang Y.S.
        • Han S.Y.
        • Jee Y.H.
        • Han K.H.
        • Han J.Y.
        • et al.
        Vascular endothelial growth factor is increased during early stage of diabetic nephropathy in type II diabetic rats.
        J Endocrinol. 2004; 183: 183-194
        • Lu M.
        • Kuroki M.
        • Amano S.
        • Tolentino M.
        • Keough K.
        • Kim I.
        • et al.
        Advanced glycation end products increase retinal vascular endothelial growth factor expression.
        J Clin Invest. 1998; 101: 1219-1224
        • Kelly D.J.
        • Buck D.
        • Cox A.J.
        • Zhang Y.
        • Gilbert R.E.
        Effects on protein kinase C-beta inhibition on glomerular vascular endothelial growth factor expression and endothelial cells in advanced experimental diabetic nephropathy.
        Am J Physiol Renal Physiol. 2007; 293: F565-F574
        • Williams B.
        • Gallacher B.
        • Patel H.
        • Orme C.
        Glucose-induced protein kinase C activation regulates vascular permeability factor mRNA expression and peptide production by human vascular smooth muscle cells in vitro.
        Diabetes. 1997; 46: 1497-1503
        • Uchida K.
        • Uchida S.
        • Nitta K.
        • Yumura W.
        • Marumo F.
        • Nihei H.
        Glomerular endothelial cells in culture express and secrete vascular endothelial growth factor.
        Am J Physiol. 1994; 266: F81-F88
        • Gruden G.
        • Thomas S.
        • Burt D.
        • Zhou W.
        • Chusney G.
        • Gnudi L.
        • et al.
        Interaction of angiotensin II and mechanical stretch on vascular endothelial growth factor production by human mesangial cells.
        J Am Soc Nephrol. 1999; 10: 730-737
        • Kuroki M.
        • Voest E.E.
        • Amano S.
        • Beerepoot L.V.
        • Takashima S.
        • Tolentino M.
        • et al.
        Reactive oxygen intermediates increase vascular endothelial growth factor expression in vitro and in vivo.
        J Clin Invest. 1996; 98: 1667-1675
        • Pertovaara L.
        • Kaipainen A.
        • Mustonen T.
        • Orpana A.
        • Ferrara N.
        • Saksela O.
        • et al.
        Vascular endothelial growth factor is induced in response to transforming growth factor-beta in fibroblastic and epithelial cells.
        J Biol Chem. 1994; 269: 6271-6274
        • Barleon B.
        • Sozzani S.
        • Zhou D.
        • Weich H.A.
        • Mantovani A.
        • Marme D.
        Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1.
        Blood. 1996; 87: 3336-3343
        • Ku D.D.
        • Zaleski J.K.
        • Liu S.
        • Brock T.A.
        Vascular endothelial growth factor induces EDRF-dependent relaxation in coronary arteries.
        Am J Physiol. 1993; 265: H586-H592
        • de Vriese A.S.
        • Tilton R.G.
        • Elger M.
        • Stephan C.C.
        • Kriz W.
        • Lameire N.H.
        Antibodies against vascular endothelial growth factor improve early renal dysfunction in experimental diabetes.
        J Am Soc Nephrol. 2001; 12: 993-1000
        • Flyvbjerg A.
        • Dagnaes-Hansen F.
        • De Vriese A.S.
        • Schrijvers B.F.
        • Tilton R.G.
        • Rasch R.
        Amelioration of long-term renal changes in obese type 2 diabetic mice by a neutralizing vascular endothelial growth factor antibody.
        Diabetes. 2002; 51: 3090-3094
        • Sung S.H.
        • Ziyadeh F.N.
        • Wang A.
        • Pyagay P.E.
        • Kanwar Y.S.
        • Chen S.
        Blockade of vascular endothelial growth factor signaling ameliorates diabetic albuminuria in mice.
        J Am Soc Nephrol. 2006; 17: 3093-3104
        • Ku C.H.
        • White K.E.
        • Dei Cas A.
        • Hayward A.
        • Webster Z.
        • Bilous R.
        • et al.
        Inducible overexpression of sFlt-1 in podocytes ameliorates glomerulopathy in diabetic mice.
        Diabetes. 2008; 57: 2824-2833
        • Kim Y.G.
        • Suga S.I.
        • Kang D.H.
        • Jefferson J.A.
        • Mazzali M.
        • Gordon K.L.
        • et al.
        Vascular endothelial growth factor accelerates renal recovery in experimental thrombotic microangiopathy.
        Kidney Int. 2000; 58: 2390-2399
        • Kang D.H.
        • Hughes J.
        • Mazzali M.
        • Schreiner G.F.
        • Johnson R.J.
        Impaired angiogenesis in the remnant kidney model: II.
        J Am Soc Nephrol. 2001; 12: 1448-1457
        • Hohenstein B.
        • Hausknecht B.
        • Boehmer K.
        • Riess R.
        • Brekken R.A.
        • Hugo C.P.
        Local VEGF activity but not VEGF expression is tightly regulated during diabetic nephropathy in man.
        Kidney Int. 2006; 69: 1654-1661
        • Schober A.
        • Karshovska E.
        • Zernecke A.
        • Weber C.
        SDF-1alpha-mediated tissue repair by stem cells: a promising tool in cardiovascular medicine?.
        Trends Cardiovasc Med. 2006; 16: 103-108
        • Ding M.
        • Cui S.
        • Li C.
        • Jothy S.
        • Haase V.
        • Steer B.M.
        • et al.
        Loss of the tumor suppressor Vhlh leads to upregulation of Cxcr4 and rapidly progressive glomerulonephritis in mice.
        Nat Med. 2006; 12: 1081-1087
        • Takabatake Y.
        • Sugiyama T.
        • Kohara H.
        • Matsusaka T.
        • Kurihara H.
        • Koni P.A.
        • et al.
        The CXCL12 (SDF-1)/CXCR4 axis is essential for the development of renal vasculature.
        J Am Soc Nephrol. 2009; 20: 1714-1723
        • Sayyed S.G.
        • Hagele H.
        • Kulkarni O.P.
        • Endlich K.
        • Segerer S.
        • Eulberg D.
        • et al.
        Podocytes produce homeostatic chemokine stromal cell-derived factor-1/CXCL12, which contributes to glomerulosclerosis, podocyte loss and albuminuria in a mouse model of type 2 diabetes.
        Diabetologia. 2009; 52: 2445-2454
        • Mazzinghi B.
        • Ronconi E.
        • Lazzeri E.
        • Sagrinati C.
        • Ballerini L.
        • Angelotti M.L.
        • et al.
        Essential but differential role for CXCR4 and CXCR7 in the therapeutic homing of human renal progenitor cells.
        J Exp Med. 2008; 205: 479-490
        • Levoye A.
        • Balabanian K.
        • Baleux F.
        • Bachelerie F.
        • Lagane B.
        CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling.
        Blood. 2009; 113: 6085-6093
        • Naumann U.
        • Cameroni E.
        • Pruenster M.
        • Mahabaleshwar H.
        • Raz E.
        • Zerwes H.G.
        • et al.
        CXCR7 functions as a scavenger for CXCL12 and CXCL11.
        PLoS One. 2010; 5: e9175
        • Esmon C.T.
        Inflammation and the activated protein C anticoagulant pathway.
        Semin Thromb Hemost. 2006; 32: 49-60
        • Borcea V.
        • Morcos M.
        • Isermann B.
        • Henkels M.
        • Ziegler S.
        • Zumbach M.
        • et al.
        Influence of ramipril on the course of plasma thrombomodulin in patients with diabetes mellitus.
        Vasa. 1999; 28: 172-180
        • Fujiwara Y.
        • Tagami S.
        • Kawakami Y.
        Circulating thrombomodulin and hematological alterations in type 2 diabetic patients with retinopathy.
        J Atheroscler Thromb. 1998; 5: 21-28
        • Isermann B.
        • Vinnikov I.A.
        • Madhusudhan T.
        • Herzog S.
        • Kashif M.
        • Blautzik J.
        • et al.
        Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis.
        Nat Med. 2007; 13: 1349-1358
        • Papapetropoulos A.
        • Garcia-Cardena G.
        • Dengler T.J.
        • Maisonpierre P.C.
        • Yancopoulos G.D.
        • Sessa W.C.
        Direct actions of angiopoietin-1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors.
        Lab Invest. 1999; 79: 213-223
        • Eklund L.
        • Olsen B.R.
        Tie receptors and their angiopoietin ligands are context-dependent regulators of vascular remodeling.
        Exp Cell Res. 2006; 312: 630-641
        • Maisonpierre P.C.
        • Suri C.
        • Jones P.F.
        • Bartunkova S.
        • Wiegand S.J.
        • Radziejewski C.
        • et al.
        Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis.
        Science. 1997; 277: 55-60
        • Satchell S.C.
        • Harper S.J.
        • Tooke J.E.
        • Kerjaschki D.
        • Saleem M.A.
        • Mathieson P.W.
        Human podocytes express angiopoietin 1, a potential regulator of glomerular vascular endothelial growth factor.
        J Am Soc Nephrol. 2002; 13: 544-550
        • Yuan H.T.
        • Suri C.
        • Landon D.N.
        • Yancopoulos G.D.
        • Woolf A.S.
        Angiopoietin-2 is a site-specific factor in differentiation of mouse renal vasculature.
        J Am Soc Nephrol. 2000; 11: 1055-1066
        • Rizkalla B.
        • Forbes J.M.
        • Cao Z.
        • Boner G.
        • Cooper M.E.
        Temporal renal expression of angiogenic growth factors and their receptors in experimental diabetes: role of the renin-angiotensin system.
        J Hypertens. 2005; 23: 153-164
        • Sun H.
        • Zheng J.M.
        • Chen S.
        • Zeng C.H.
        • Liu Z.H.
        • Li L.S.
        Enhanced expression of ANGPTL2 in the microvascular lesions of diabetic glomerulopathy.
        Nephron Exp Nephrol. 2007; 105: e117-e123
        • Davis B.
        • Dei Cas A.
        • Long D.A.
        • White K.E.
        • Hayward A.
        • Ku C.H.
        • et al.
        Podocyte-specific expression of angiopoietin-2 causes proteinuria and apoptosis of glomerular endothelia.
        J Am Soc Nephrol. 2007; 18: 2320-2329
        • Marsden P.A.
        • Brenner B.M.
        Nitric oxide and endothelins—novel autocrine paracrine regulators of the circulation.
        Semin Nephrol. 1991; 11: 169-185
        • Santilli F.
        • Cipollone F.
        • Mezzetti A.
        • Chiarelli F.
        The role of nitric oxide in the development of diabetic angiopathy.
        Horm Metab Res. 2004; 36: 319-335
        • Advani A.
        • Gilbert R.E.
        • Thai K.
        • Gow R.M.
        • Langham R.G.
        • Cox A.J.
        • et al.
        Expression, localization, and function of the thioredoxin system in diabetic nephropathy.
        J Am Soc Nephrol. 2009; 20: 730-741
        • Zou M.H.
        • Cohen R.
        • Ullrich V.
        Peroxynitrite and vascular endothelial dysfunction in diabetes mellitus.
        Endothelium. 2004; 11: 89-97
        • Chu S.
        • Bohlen H.G.
        High concentration of glucose inhibits glomerular endothelial eNOS through a PKC mechanism.
        Am J Physiol Renal Physiol. 2004; 287: F384-F392
        • Keynan S.
        • Hirshberg B.
        • Levin-Iaina N.
        • Wexler I.D.
        • Dahan R.
        • Reinhartz E.
        • et al.
        Renal nitric oxide production during the early phase of experimental diabetes mellitus.
        Kidney Int. 2000; 58: 740-747
        • Tolins J.P.
        • Palmer R.M.
        • Moncada S.
        • Raij L.
        Role of endothelium-derived relaxing factor in regulation of renal hemodynamic responses.
        Am J Physiol. 1990; 258: H655-H662
        • Tolins J.P.
        • Shultz P.J.
        • Raij L.
        • Brown D.M.
        • Mauer S.M.
        Abnormal renal hemodynamic response to reduced renal perfusion pressure in diabetic rats: role of NO.
        Am J Physiol. 1993; 265: F886-F895
        • Bank N.
        • Aynedjian H.S.
        Role of EDRF (nitric oxide) in diabetic renal hyperfiltration.
        Kidney Int. 1993; 43: 1306-1312
        • Reyes A.A.
        • Karl I.E.
        • Kissane J.
        • Klahr S.
        L-arginine administration prevents glomerular hyperfiltration and decreases proteinuria in diabetic rats.
        J Am Soc Nephrol. 1993; 4: 1039-1045
        • Sugimoto H.
        • Shikata K.
        • Matsuda M.
        • Kushiro M.
        • Hayashi Y.
        • Hiragushi K.
        • et al.
        Increased expression of endothelial cell nitric oxide synthase (ecNOS) in afferent and glomerular endothelial cells is involved in glomerular hyperfiltration of diabetic nephropathy.
        Diabetologia. 1998; 41: 1426-1434
        • Komers R.
        • Anderson S.
        Paradoxes of nitric oxide in the diabetic kidney.
        Am J Physiol Renal Physiol. 2003; 284: F1121-F1137
        • Veelken R.
        • Hilgers K.F.
        • Hartner A.
        • Haas A.
        • Bohmer K.P.
        • Sterzel R.B.
        Nitric oxide synthase isoforms and glomerular hyperfiltration in early diabetic nephropathy.
        J Am Soc Nephrol. 2000; 11: 71-79
        • Chiarelli F.
        • Cipollone F.
        • Romano F.
        • Tumini S.
        • Costantini F.
        • di Ricco L.
        • et al.
        Increased circulating nitric oxide in young patients with type 1 diabetes and persistent microalbuminuria: relation to glomerular hyperfiltration.
        Diabetes. 2000; 49: 1258-1263
        • Veldman B.A.
        • Spiering W.
        • Doevendans P.A.
        • Vervoort G.
        • Kroon A.A.
        • de Leeuw P.W.
        • et al.
        The Glu298Asp polymorphism of the NOS 3 gene as a determinant of the baseline production of nitric oxide.
        J Hypertens. 2002; 20: 2023-2027
        • Noiri E.
        • Satoh H.
        • Taguchi J.
        • Brodsky S.V.
        • Nakao A.
        • Ogawa Y.
        • et al.
        Association of eNOS Glu298Asp polymorphism with end-stage renal disease.
        Hypertension. 2002; 40: 535-540
        • Zanchi A.
        • Moczulski D.K.
        • Hanna L.S.
        • Wantman M.
        • Warram J.H.
        • Krolewski A.S.
        Risk of advanced diabetic nephropathy in type 1 diabetes is associated with endothelial nitric oxide synthase gene polymorphism.
        Kidney Int. 2000; 57: 405-413
        • Ezzidi I.
        • Mtiraoui N.
        • Mohamed M.B.
        • Mahjoub T.
        • Kacem M.
        • Almawi W.Y.
        Association of endothelial nitric oxide synthase Glu298Asp, 4b/a, and −786T>C gene variants with diabetic nephropathy.
        J Diabetes Complications. 2008; 22: 331-338
        • Ahluwalia T.S.
        • Ahuja M.
        • Rai T.S.
        • Kohli H.S.
        • Sud K.
        • Bhansali A.
        • et al.
        Endothelial nitric oxide synthase gene haplotypes and diabetic nephropathy among Asian Indians.
        Mol Cell Biochem. 2008; 314: 9-17
        • Shin Shin Y.
        • Baek S.H.
        • Chang K.Y.
        • Park C.W.
        • Yang C.W.
        • Jin D.C.
        • et al.
        Relations between eNOS Glu298Asp polymorphism and progression of diabetic nephropathy.
        Diabetes Res Clin Pract. 2004; 65: 257-265
        • Nakagawa T.
        • Sato W.
        • Glushakova O.
        • Heinig M.
        • Clarke T.
        • Campbell-Thompson M.
        • et al.
        Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy.
        J Am Soc Nephrol. 2007; 18: 539-550
        • Kanetsuna Y.
        • Takahashi K.
        • Nagata M.
        • Gannon M.A.
        • Breyer M.D.
        • Harris R.C.
        • et al.
        Deficiency of endothelial nitric-oxide synthase confers susceptibility to diabetic nephropathy in nephropathy-resistant inbred mice.
        Am J Pathol. 2007; 170: 1473-1484
        • Mohan S.
        • Reddick R.L.
        • Musi N.
        • Horn D.A.
        • Yan B.
        • Prihoda T.J.
        • et al.
        Diabetic eNOS knockout mice develop distinct macro- and microvascular complications.
        Lab Invest. 2008; 88: 515-528
        • Zhao H.J.
        • Wang S.
        • Cheng H.
        • Zhang M.Z.
        • Takahashi T.
        • Fogo A.B.
        • et al.
        Endothelial nitric oxide synthase deficiency produces accelerated nephropathy in diabetic mice.
        J Am Soc Nephrol. 2006; 17: 2664-2669
        • Nakagawa T.
        Uncoupling of VEGF with NO as a mechanism for diabetic nephropathy.
        Diabetes Res Clin Pract. 2008; 82 (Suppl 1): S67-S69
        • Sato W.
        • Kosugi T.
        • Zhang L.
        • Roncal C.A.
        • Heinig M.
        • Campbell-Thompson M.
        • et al.
        The pivotal role of VEGF on glomerular macrophage infiltration in advanced diabetic nephropathy.
        Lab Invest. 2008; 88: 949-961
        • Nakagawa T.
        Uncoupling of the VEGF-endothelial nitric oxide axis in diabetic nephropathy: an explanation for the paradoxical effects of VEGF in renal disease.
        Am J Physiol Renal Physiol. 2007; 292: F1665-F1672
        • Nyengaard J.R.
        Number and dimensions of rat glomerular capillaries in normal development and after nephrectomy.
        Kidney Int. 1993; 43: 1049-1057
        • Nyengaard J.R.
        • Rasch R.
        The impact of experimental diabetes mellitus in rats on glomerular capillary number and sizes.
        Diabetologia. 1993; 36: 189-194
        • Seyer-Hansen K.
        Renal hypertrophy in streptozotocin-diabetic rats.
        Clin Sci Mol Med Suppl. 1976; 51: 551-555
        • Seyer-Hansen K.
        Renal hypertrophy in experimental diabetes mellitus.
        Kidney Int. 1983; 23: 643-646
        • Yamamoto Y.
        • Maeshima Y.
        • Kitayama H.
        • Kitamura S.
        • Takazawa Y.
        • Sugiyama H.
        • et al.
        Tumstatin peptide, an inhibitor of angiogenesis, prevents glomerular hypertrophy in the early stage of diabetic nephropathy.
        Diabetes. 2004; 53: 1831-1840
        • Ichinose K.
        • Maeshima Y.
        • Yamamoto Y.
        • Kitayama H.
        • Takazawa Y.
        • Hirokoshi K.
        • et al.
        Antiangiogenic endostatin peptide ameliorates renal alterations in the early stage of a type 1 diabetic nephropathy model.
        Diabetes. 2005; 54: 2891-2903
        • Østerby R.
        • Nyberg G.
        New vessel formation in the renal corpuscles in advanced diabetic glomerulopathy.
        J Diabet Complications. 1987; 1: 122-127
        • Min W.
        • Yamanaka N.
        Three-dimensional analysis of increased vasculature around the glomerular vascular pole in diabetic nephropathy.
        Virchows Arch A Pathol Anat Histopathol. 1993; 423: 201-207
        • Østerby R.
        Glomerular structural changes in type 1 (insulin-dependent) diabetes mellitus: causes, consequences, and prevention.
        Diabetologia. 1992; 35: 803-812
        • Wehner H.
        • Nelischer G.
        Morphometric investigations on intrarenal vessels of streptozotocin-diabetic rats.
        Virchows Arch A Pathol Anat Histopathol. 1991; 419: 231-235
        • Nakagawa T.
        • Kosugi T.
        • Haneda M.
        • Rivard C.J.
        • Long D.A.
        Abnormal angiogenesis in diabetic nephropathy.
        Diabetes. 2009; 58: 1471-1478
        • Mauer S.M.
        • Steffes M.W.
        • Ellis E.N.
        • Sutherland D.E.
        • Brown D.M.
        • Goetz F.C.
        Structural-functional relationships in diabetic nephropathy.
        J Clin Invest. 1984; 74: 1143-1155
        • Lindenmeyer M.T.
        • Kretzler M.
        • Boucherot A.
        • Berra S.
        • Yasuda Y.
        • Henger A.
        • et al.
        Interstitial vascular rarefaction and reduced VEGF-A expression in human diabetic nephropathy.
        J Am Soc Nephrol. 2007; 18: 1765-1776
        • Baelde H.J.
        • Eikmans M.
        • Doran P.P.
        • Lappin D.W.
        • de Heer E.
        • Bruijn J.A.
        Gene expression profiling in glomeruli from human kidneys with diabetic nephropathy.
        Am J Kidney Dis. 2004; 43: 636-650
        • Baelde H.J.
        • Eikmans M.
        • Lappin D.W.
        • Doran P.P.
        • Hohenadel D.
        • Brinkkoetter P.T.
        • et al.
        Reduction of VEGF-A and CTGF expression in diabetic nephropathy is associated with podocyte loss.
        Kidney Int. 2007; 71: 637-645
        • Bohle A.
        • Mackensen-Haen S.
        • Wehrmann M.
        Significance of postglomerular capillaries in the pathogenesis of chronic renal failure.
        Kidney Blood Press Res. 1996; 19: 191-195
        • Fine L.G.
        • Orphanides C.
        • Norman J.T.
        Progressive renal disease: the chronic hypoxia hypothesis.
        Kidney Int Suppl. 1998; 65: S74-S78
        • Fine L.G.
        • Norman J.T.
        Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics.
        Kidney Int. 2008; 74: 867-872
        • Mole D.R.
        • Ratcliffe P.J.
        Cellular oxygen sensing in health and disease.
        Pediatr Nephrol. 2008; 23: 681-694
        • Nangaku M.
        • Eckardt K.U.
        Hypoxia and the HIF system in kidney disease.
        J Mol Med. 2007; 85: 1325-1330
        • Kang D.H.
        • Kanellis J.
        • Hugo C.
        • Truong L.
        • Anderson S.
        • Kerjaschki D.
        • et al.
        Role of the microvascular endothelium in progressive renal disease.
        J Am Soc Nephrol. 2002; 13: 806-816
        • Ziyadeh F.N.
        Mediators of diabetic renal disease: the case for tgf-Beta as the major mediator.
        J Am Soc Nephrol. 2004; 15 (Suppl 1): S55-S57
        • Kalluri R.
        • Weinberg R.A.
        The basics of epithelial-mesenchymal transition.
        J Clin Invest. 2009; 119: 1420-1428
        • Zeisberg E.M.
        • Tarnavski O.
        • Zeisberg M.
        • Dorfman A.L.
        • McMullen J.R.
        • Gustafsson E.
        • et al.
        Endothelial-to-mesenchymal transition contributes to cardiac fibrosis.
        Nat Med. 2007; 13: 952-961
        • Sugimoto H.
        • Grahovac G.
        • Zeisberg M.
        • Kalluri R.
        Renal fibrosis and glomerulosclerosis in a new mouse model of diabetic nephropathy and its regression by bone morphogenic protein-7 and advanced glycation end product inhibitors.
        Diabetes. 2007; 56: 1825-1833
        • Zeisberg M.
        • Hanai J.
        • Sugimoto H.
        • Mammoto T.
        • Charytan D.
        • Strutz F.
        • et al.
        BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury.
        Nat Med. 2003; 9: 964-968
        • Mitu G.
        • Hirschberg R.
        Bone morphogenetic protein-7 (BMP7) in chronic kidney disease.
        Front Biosci. 2008; 13: 4726-4739
        • Li J.
        • Qu X.
        • Bertram J.F.
        Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice.
        Am J Pathol. 2009; 175: 1380-1388
        • Zeisberg E.M.
        • Potenta S.E.
        • Sugimoto H.
        • Zeisberg M.
        • Kalluri R.
        Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition.
        J Am Soc Nephrol. 2008; 19: 2282-2287