Advertisement
Research Article| Volume 32, ISSUE 5, P437-444, September 2012

Download started.

Ok

Can Existing Drugs Approved for Other Indications Retard Renal Function Decline in Patients With Type 1 Diabetes and Nephropathy?

  • Alessandro Doria
    Correspondence
    Address reprint requests to Alessandro Doria, MD, PhD, MPH, Section on Genetics and Epidemiology, Joslin Diabetes Center, One Joslin Pl, Boston, MA 02215
    Affiliations
    Section on Genetics and Epidemiology, Joslin Diabetes Center, Boston, Massachusetts

    Harvard Medical School, Boston, Massachusetts
    Search for articles by this author
  • Monika A. Niewczas
    Affiliations
    Section on Genetics and Epidemiology, Joslin Diabetes Center, Boston, Massachusetts

    Harvard Medical School, Boston, Massachusetts
    Search for articles by this author
  • Paolo Fiorina
    Correspondence
    Paolo Fiorina, MD PhD, Transplantation Research Center, Nephrology Division, Children's Hospital, Harvard Medical School, 300 Longwood Ave, Enders 5th floor, Room En530, Boston, MA 02215
    Affiliations
    Harvard Medical School, Boston, Massachusetts

    Transplantation Research Center, Nephrology Division, Children's Hospital and Brigham and Women's Hospital, Boston, Massachusetts

    San Raffaele Scientific Institute, Milan, Italy
    Search for articles by this author

      Summary

      Mounting evidence from human, animal, and in vitro studies indicates that existing drugs, developed to treat other disorders, also might be effective in preventing or slowing the progression of diabetic nephropathy to end-stage renal disease. Examples of such drugs include the urate-lowering agent allopurinol, the anti–tumor necrosis factor agents etanercept and infliximab, and the immunomodulating drug abatacept. Because some of these medications are already on the market and have been used for a number of years for other indications, they can be tested immediately in human beings for a beneficial effect on renal function in diabetes. Special emphasis should be placed on evaluating the use of these drugs early in the course of diabetic nephropathy when renal damage is most likely to be reversible and interventions can yield the greatest delay to end-stage renal disease.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Nephrology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Krolewski A.S.
        • Warram J.H.
        Epidemiology of late complications of diabetes: a basis for the development and evaluation of preventive program.
        in: Kahn C.R. Weir G.C. King G.L. Jacobson A.M. Moses A.C. Smith R.J. Joslin's diabetes mellitus. Lippincott, Williams & Wilkins, New York2005
        • U S Renal Data System
        USRDS 2010 annual data report: atlas of chronic kidney disease and end-stage renal disease in the United States.
        National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD2010
        • de Boer I.H.
        • Rue T.C.
        • Hall Y.N.
        • Heagerty P.J.
        • Weiss N.S.
        • Himmelfarb J.
        Temporal trends in the prevalence of diabetic kidney disease in the United States.
        JAMA. 2011; 305: 2532-2539
        • Rosolowsky E.T.
        • Skupien J.
        • Smiles A.M.
        • Niewczas M.
        • Roshan B.
        • Stanton R.
        • et al.
        Risk for ESRD in type 1 diabetes remains high despite renoprotection.
        J Am Soc Nephrol. 2011; 22: 545-553
        • Bonventre J.V.
        Can we target tubular damage to prevent renal function decline in diabetes?.
        Semin Nephrol. 2012; 32: 452-462
        • Humphrey B.
        Targeting pericyte differentiation as a strategy to modulate kidney fibrosis in diabetic nephropathy.
        Semin Nephrol. 2012; 32: 463-470
        • Mima A.
        • Qi W.
        • King G.L.
        Implications of treatment that target protective mechanisms against diabetic nephropathy.
        Semin Nephrol. 2012; 32: 471-478
        • Breyer M.D.
        Drug Discovery for Diabetic Nephropathy: Trying the Leap From Mouse to Man.
        Semin Nephrol. 2012; 32: 445-451
        • Looker H.C.
        • Fagot-Campagna A.
        • Gunter E.W.
        • Pfeiffer C.M.
        • Narayan K.M.
        • Knowler W.C.
        • et al.
        Homocysteine as a risk factor for nephropathy and retinopathy in type 2 diabetes.
        Diabetologia. 2003; 46: 766-772
        • Buysschaert M.
        • Dramais A.S.
        • Wallemacq P.E.
        • Hermans M.P.
        Hyperhomocysteinemia in type 2 diabetes: relationship to macroangiopathy, nephropathy, and insulin resistance.
        Diabetes Care. 2000; 23: 1816-1822
        • Eikelboom J.W.
        • Lonn E.
        • Genest Jr, J.
        • Hankey G.
        • Yusuf S.
        Homocyst(e)ine and cardiovascular disease: a critical review of the epidemiologic evidence.
        Ann Intern Med. 1999; 131: 363-375
        • Bonnet F.
        • Cooper M.E.
        Potential influence of lipids in diabetic nephropathy: insights from experimental data and clinical studies.
        Diabetes Metab. 2000; 26: 254-264
        • Valensi P.
        • Picard S.
        Lipids, lipid-lowering therapy and diabetes complications.
        Diabetes Metab. 2011; 37: 15-24
        • House A.A.
        • Eliasziw M.
        • Cattran D.C.
        • Churchill D.N.
        • Oliver M.J.
        • Fine A.
        • et al.
        Effect of B-vitamin therapy on progression of diabetic nephropathy: a randomized controlled trial.
        JAMA. 2010; 303: 1603-1609
        • Colhoun H.M.
        • Betteridge D.J.
        • Durrington P.N.
        • Hitman G.A.
        • Neil H.A.
        • Livingstone S.J.
        • et al.
        Effects of atorvastatin on kidney outcomes and cardiovascular disease in patients with diabetes: an analysis from the Collaborative Atorvastatin Diabetes Study (CARDS).
        Am J Kidney Dis. 2009; 54: 810-819
        • Sandhu S.
        • Wiebe N.
        • Fried L.F.
        • Tonelli M.
        Statins for improving renal outcomes: a meta-analysis.
        J Am Soc Nephrol. 2006; 17: 2006-2016
        • Sukhija R.
        • Bursac Z.
        • Kakar P.
        • Fink L.
        • Fort C.
        • Satwani S.
        • et al.
        Effect of statins on the development of renal dysfunction.
        Am J Cardiol. 2008; 101: 975-979
        • Ficociello L.H.
        • Rosolowsky E.T.
        • Niewczas M.A.
        • Maselli N.J.
        • Weinberg J.M.
        • Aschengrau A.
        • et al.
        High-normal serum uric acid increases risk of early progressive renal function loss in type 1 diabetes: results of a 6-year follow-up.
        Diabetes Care. 2010; 33: 1337-1343
        • Jalal D.I.
        • Rivard C.J.
        • Johnson R.J.
        • Maahs D.M.
        • McFann K.
        • Rewers M.
        • et al.
        Serum uric acid levels predict the development of albuminuria over 6 years in patients with type 1 diabetes: findings from the Coronary Artery Calcification in Type 1 Diabetes study.
        Nephrol Dial Transplant. 2010; 25: 1865-1869
        • Rodrigues T.C.
        • Maahs D.M.
        • Johnson R.J.
        • Jalal D.I.
        • Kinney G.L.
        • Rivard C.
        • et al.
        Serum uric acid predicts progression of subclinical coronary atherosclerosis in individuals without renal disease.
        Diabetes Care. 2010; 33: 2471-2473
        • Hovind P.
        • Rossing P.
        • Tarnow L.
        • Johnson R.J.
        • Parving H.H.
        Serum uric acid as a predictor for development of diabetic nephropathy in type 1 diabetes: an inception cohort study.
        Diabetes. 2009; 58: 1668-1671
        • Johnson R.J.
        • Segal M.S.
        • Srinivas T.
        • Ejaz A.
        • Mu W.
        • Roncal C.
        • et al.
        Essential hypertension, progressive renal disease, and uric acid: a pathogenetic link?.
        J Am Soc Nephrol. 2005; 16: 1909-1919
        • Mazzali M.
        • Kanellis J.
        • Han L.
        • Feng L.
        • Xia Y.Y.
        • Chen Q.
        • et al.
        Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism.
        Am J Physiol Renal Physiol. 2002; 282: F991-F997
        • Desco M.C.
        • Asensi M.
        • Marquez R.
        • Martinez-Valls J.
        • Vento M.
        • Pallardo F.V.
        • et al.
        Xanthine oxidase is involved in free radical production in type 1 diabetes: protection by allopurinol.
        Diabetes. 2002; 51: 1118-1124
        • Pacher P.
        • Nivorozhkin A.
        • Szabo C.
        Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol.
        Pharmacol Rev. 2006; 58: 87-114
        • Siu Y.P.
        • Leung K.T.
        • Tong M.K.
        • Kwan T.H.
        Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level.
        Am J Kidney Dis. 2006; 47: 51-59
        • Goicoechea M.
        • de Vinuesa S.G.
        • Verdalles U.
        • Ruiz-Caro C.
        • Ampuero J.
        • Rincon A.
        • et al.
        Effect of allopurinol in chronic kidney disease progression and cardiovascular risk.
        Clin J Am Soc Nephrol. 2010; 5: 1388-1393
        • Sanchez-Lozada L.G.
        • Tapia E.
        • Soto V.
        • Avila-Casado C.
        • Franco M.
        • Wessale J.L.
        • et al.
        Effect of febuxostat on the progression of renal disease in 5/6 nephrectomy rats with and without hyperuricemia.
        Nephron Physiol. 2008; 108: 69-78
        • Schumacher Jr, H.R.
        • Becker M.A.
        • Wortmann R.L.
        • MacDonald P.A.
        • Hunt B.
        • Streit J.
        • et al.
        Effects of febuxostat versus allopurinol and placebo in reducing serum urate in subjects with hyperuricemia and gout: a 28-week, phase III, randomized, double-blind, parallel-group trial.
        Arthritis Rheum. 2008; 59: 1540-1548
        • Becker M.A.
        • Schumacher Jr, H.R.
        • Wortmann R.L.
        • MacDonald P.A.
        • Eustace D.
        • Palo W.A.
        • et al.
        Febuxostat compared with allopurinol in patients with hyperuricemia and gout.
        N Engl J Med. 2005; 353: 2450-2461
        • Feig D.I.
        • Soletsky B.
        • Johnson R.J.
        Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial.
        JAMA. 2008; 300: 924-932
        • Noman A.
        • Ang D.S.
        • Ogston S.
        • Lang C.C.
        • Struthers A.D.
        Effect of high-dose allopurinol on exercise in patients with chronic stable angina: a randomised, placebo controlled crossover trial.
        Lancet. 2010; 375: 2161-2167
        • Roujeau J.C.
        • Kelly J.P.
        • Naldi L.
        • Rzany B.
        • Stern R.S.
        • Anderson T.
        • et al.
        Medication use and the risk of Stevens-Johnson syndrome or toxic epidermal necrolysis.
        N Engl J Med. 1995; 333: 1600-1607
        • Mauer M.
        • Zinman B.
        • Gardiner R.
        • Suissa S.
        • Sinaiko A.
        • Strand T.
        • et al.
        Renal and retinal effects of enalapril and losartan in type 1 diabetes.
        N Engl J Med. 2009; 361: 40-51
        • Bohle A.
        • Wehrmann M.
        • Bogenschutz O.
        • Batz C.
        • Muller C.A.
        • Muller G.A.
        The pathogenesis of chronic renal failure in diabetic nephropathy.
        Pathol Res Pract. 1991; 187: 251-259
        • Risdon R.A.
        • Sloper J.C.
        • De Wardener H.E.
        Relationship between renal function and histological changes found in renal-biopsy specimens from patients with persistent glomerular nephritis.
        Lancet. 1968; 2: 363-366
        • Vaidya V.S.
        • Niewczas M.A.
        • Ficociello L.H.
        • Johnson A.C.
        • Collings F.B.
        • Warram J.H.
        • et al.
        Regression of microalbuminuria in type 1 diabetes is associated with lower levels of urinary tubular injury biomarkers, kidney injury molecule-1, and N-acetyl-beta-D-glucosaminidase.
        Kidney Int. 2011; 79: 464-470
        • Wolkow P.P.
        • Niewczas M.A.
        • Perkins B.
        • Ficociello L.H.
        • Lipinski B.
        • Warram J.H.
        • et al.
        Association of urinary inflammatory markers and renal decline in microalbuminuric type 1 diabetics.
        J Am Soc Nephrol. 2008; 19: 789-797
        • Lim A.K.
        • Ma F.Y.
        • Nikolic-Paterson D.J.
        • Kitching A.R.
        • Thomas M.C.
        • Tesch G.H.
        Lymphocytes promote albuminuria, but not renal dysfunction or histological damage in a mouse model of diabetic renal injury.
        Diabetologia. 2010; 53: 1772-1782
        • Tesch G.H.
        Macrophages and diabetic nephropathy.
        Semin Nephrol. 2010; 30: 290-301
        • Chow F.
        • Ozols E.
        • Nikolic-Paterson D.J.
        • Atkins R.C.
        • Tesch G.H.
        Macrophages in mouse type 2 diabetic nephropathy: correlation with diabetic state and progressive renal injury.
        Kidney Int. 2004; 65: 116-128
        • Mizuno M.
        • Sada T.
        • Kato M.
        • Fukushima Y.
        • Terashima H.
        • Koike H.
        The effect of angiotensin II receptor blockade on an end-stage renal failure model of type 2 diabetes.
        J Cardiovasc Pharmacol. 2006; 48: 135-142
        • Rodriguez-Iturbe B.
        • Quiroz Y.
        • Shahkarami A.
        • Li Z.
        • Vaziri N.D.
        Mycophenolate mofetil ameliorates nephropathy in the obese Zucker rat.
        Kidney Int. 2005; 68: 1041-1047
        • Giunti S.
        • Barutta F.
        • Perin P.C.
        • Gruden G.
        Targeting the MCP-1/CCR2 system in diabetic kidney disease.
        Curr Vasc Pharmacol. 2010; 8: 849-860
        • Tesch G.H.
        MCP-1/CCL2: a new diagnostic marker and therapeutic target for progressive renal injury in diabetic nephropathy.
        Am J Physiol Renal Physiol. 2008; 294: F697-F701
        • Tesch G.H.
        • Lim A.K.
        Recent insights into diabetic renal injury from the db/db mouse model of type 2 diabetic nephropathy.
        Am J Physiol Renal Physiol. 2011; 300: F301-F310
        • Ble A.
        • Mosca M.
        • Di Loreto G.
        • Guglielmotti A.
        • Biondi G.
        • Bombardieri S.
        • et al.
        Antiproteinuric effect of chemokine C-C motif ligand 2 inhibition in subjects with acute proliferative lupus nephritis.
        Am J Nephrol. 2011; 34: 367-372
        • Shihab F.S.
        • Bennett W.M.
        • Yi H.
        • Andoh T.F.
        Pirfenidone treatment decreases transforming growth factor-beta1 and matrix proteins and ameliorates fibrosis in chronic cyclosporine nephrotoxicity.
        Am J Transplant. 2002; 2: 111-119
        • Sharma K.
        • Ix J.H.
        • Mathew A.V.
        • Cho M.
        • Pflueger A.
        • Dunn S.R.
        • et al.
        Pirfenidone for diabetic nephropathy.
        J Am Soc Nephrol. 2011; 22: 1144-1151
        • Gohda T.
        • Niewczas M.A.
        • Skupien J.
        • Walker W.H.
        • Ficociello L.H.
        • Sciutto F.R.
        • et al.
        Circulating tumor necrosis factor receptors 1 and 2 and risk of early renal function decline in type 1 diabetes.
        J Am Soc Nephrol. 2012; 23: 516-524
        • Niewczas M.A.
        • Gohda T.
        • Skupien J.
        • Smiles A.M.
        • Walker W.H.
        • Rosetti F.
        • et al.
        Circulating TNF receptors 1 and 2 predict ESRD in type 2 diabetes.
        J Am Soc Nephrol. 2012; 23: 507-515
        • McInnes I.B.
        • Schett G.
        The pathogenesis of rheumatoid arthritis.
        N Engl J Med. 2011; 365: 2205-2219
        • Navarro J.F.
        • Mora-Fernandez C.
        The role of TNF-alpha in diabetic nephropathy: pathogenic and therapeutic implications.
        Cytokine Growth Factor Rev. 2006; 17: 441-450
        • Al Lamki R.S.
        • Wang J.
        • Vandenabeele P.
        • Bradley J.A.
        • Thiru S.
        • Luo D.
        • et al.
        TNFR1- and TNFR2-mediated signaling pathways in human kidney are cell type-specific and differentially contribute to renal injury.
        FASEB J. 2005; 19: 1637-1645
        • Guo G.
        • Morrissey J.
        • McCracken R.
        • Tolley T.
        • Klahr S.
        Role of TNFR1 and TNFR2 receptors in tubulointerstitial fibrosis of obstructive nephropathy.
        Am J Physiol Renal Physiol. 1999; 277: F766-F772
        • Liu C.J.
        • Bosch X.
        Progranulin: a growth factor, a novel TNFR ligand and a drug target.
        Pharmacol Ther. 2012; 133: 124-132
        • Tang W.
        • Lu Y.
        • Tian Q.Y.
        • Zhang Y.
        • Guo F.J.
        • Liu G.Y.
        • et al.
        The Growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice.
        Science. 2011; 332: 478-484
        • Schlondorff D.
        • Banas B.
        The mesangial cell revisited: no cell is an island.
        J Am Soc Nephrol. 2009; 20: 1179-1187
        • Anders H.J.
        • Muruve D.A.
        The inflammasomes in kidney disease.
        J Am Soc Nephrol. 2011; 22: 1007-1018
        • Breyer M.D.
        • Bottinger E.
        • Brosius III, F.C.
        • Coffman T.M.
        • Harris R.C.
        • Heilig C.W.
        • et al.
        Mouse models of diabetic nephropathy.
        J Am Soc Nephrol. 2005; 16: 27-45
        • Galkina E.
        • Ley K.
        Leukocyte recruitment and vascular injury in diabetic nephropathy.
        J Am Soc Nephrol. 2006; 17: 368-377
        • Eller K.
        • Kirsch A.
        • Wolf A.M.
        • Sopper S.
        • Tagwerker A.
        • Stanzl U.
        • et al.
        Potential role of regulatory T cells in reversing obesity-linked insulin resistance and diabetic nephropathy.
        Diabetes. 2011; 60: 2954-2962
        • Getts D.R.
        • Shankar S.
        • Chastain E.M.
        • Martin A.
        • Getts M.T.
        • Wood K.
        • et al.
        Current landscape for T-cell targeting in autoimmunity and transplantation.
        Immunotherapy. 2011; 3: 853-870
        • Gutwein P.
        • Abdel-Bakky M.S.
        • Doberstein K.
        • Schramme A.
        • Beckmann J.
        • Schaefer L.
        • et al.
        CXCL16 and oxLDL are induced in the onset of diabetic nephropathy.
        J Cell Mol Med. 2009; 13: 3809-3825
        • Huber T.B.
        • Reinhardt H.C.
        • Exner M.
        • Burger J.A.
        • Kerjaschki D.
        • Saleem M.A.
        • et al.
        Expression of functional CCR and CXCR chemokine receptors in podocytes.
        J Immunol. 2002; 168: 6244-6252
        • Reiser J.
        • von G.G.
        • Loos M.
        • Oh J.
        • Asanuma K.
        • Giardino L.
        • et al.
        Induction of B7-1 in podocytes is associated with nephrotic syndrome.
        J Clin Invest. 2004; 113: 1390-1397
        • Orban T.
        • Bundy B.
        • Becker D.J.
        • DiMeglio L.A.
        • Gitelman S.E.
        • Goland R.
        • et al.
        Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial.
        Lancet. 2011; 378: 412-419
        • Wong C.K.
        • Ho A.W.
        • Tong P.C.
        • Yeung C.Y.
        • Chan J.C.
        • Kong A.P.
        • et al.
        Aberrant expression of soluble co-stimulatory molecules and adhesion molecules in type 2 diabetic patients with nephropathy.
        J Clin Immunol. 2008; 28: 36-43
        • Krolewski A.S.
        • Bonventre J.V.
        High Risk of ESRD in Type 1 Diabetes: New Strategies Are Needed to Retard Progressive Renal Function Decline.
        Semin Nephrol. 2012; 32: 407-414
        • Caramori M.L.
        • Fioretto P.
        • Mauer M.
        Low glomerular filtration rate in normoalbuminuric type 1 diabetic patients: an indicator of more advanced glomerular lesions.
        Diabetes. 2003; 52: 1036-1040
        • Perkins B.A.
        • Ficociello L.H.
        • Ostrander B.E.
        • Silva K.H.
        • Weinberg J.
        • Warram J.H.
        • et al.
        Microalbuminuria and the risk for early progressive renal function decline in type 1 diabetes.
        J Am Soc Nephrol. 2007; 18: 1353-1361
        • Premaratne E.
        • MacIsaac R.J.
        • Finch S.
        • Panagiotopoulos S.
        • Ekinci E.
        • Jerums G.
        Serial measurements of cystatin C are more accurate than creatinine-based methods in detecting declining renal function in type 1 diabetes.
        Diabetes Care. 2008; 31: 971-973
        • Tu Y.K.
        • Blance A.
        • Clerehugh V.
        • Gilthorpe M.S.
        Statistical power for analyses of changes in randomized controlled trials.
        J Dent Res. 2005; 84: 283-287
        • Stevens L.A.
        • Greene T.
        • Levey A.S.
        Surrogate end points for clinical trials of kidney disease progression.
        Clin J Am Soc Nephrol. 2006; 1: 874-884