Advertisement

Can We Target Tubular Damage to Prevent Renal Function Decline in Diabetes?

  • Joseph V. Bonventre
    Correspondence
    Address reprint requests to Joseph V. Bonventre, MD, PhD, Harvard Institutes of Medicine, Room 576, 4 Blackfan Circle, Boston, MA 02115
    Affiliations
    Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA; and Harvard Stem Cell Institute, Boston, MA
    Search for articles by this author

      Summary

      The glomerulus has been at the center of attention as the primary site of injury in diabetic nephropathy (DN). Although there is no question that there are changes seen in the glomerulus, it is also well known that tubulointerstitial changes are a prominent component of the disease, especially in patients with type 2 diabetes. The level of albuminuria and DN disease progression best correlate with tubular degeneration and interstitial fibrosis. Nephrotoxicity studies in animals reveal that albuminuria is a highly sensitive marker of early tubular toxicity even in the absence of glomerular pathology. Urinary biomarker data in human beings support the view that proximal tubule injury contributes in a primary way, rather than in a secondary manner, to the development of early DN. I present a model in which very specific injury to the proximal tubule in vivo in the mouse results in severe inflammation, loss of blood vessels, interstitial fibrosis, and glomerulosclerosis. Increased glucose levels, free glycation adducts, reactive oxygen species, and oxidized lipids result in toxicity to tubule epithelia. This results in loss of cells with a stimulus to repair the epithelium. However, because of sublethal injury there is cell-cycle arrest in epithelial cells attempting to replace damaged cells. This leads to epithelial secretion of both profibrogenic growth factors, collagens, and factors that cause pericytes to proliferate and differentiate into myofibroblasts, leading to endothelial destabilization and capillary rarefaction. Local ischemia ensues with further injury to the tubules, more profibrogenic mediators, matrix protein deposition, fibrosis, and glomerulosclerosis.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Nephrology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fioretto P.
        • Mauer M.
        Histopathology of diabetic nephropathy.
        Semin Nephrol. 2007; 27: 195-207
        • Mauer S.M.
        • Steffes M.W.
        • Ellis E.N.
        • et al.
        Structural-functional relationships in diabetic nephropathy.
        J Clin Invest. 1984; 74: 1143-1155
        • White K.E.
        • Bilous R.W.
        Type 2 diabetic patients with nephropathy show structural-functional relationships that are similar to type 1 disease.
        J Am Soc Nephrol. 2000; 11: 1667-1673
        • Najafian B.
        • Kim Y.
        • Crosson J.T.
        • Mauer M.
        Atubular glomeruli and glomerulotubular junction abnormalities in diabetic nephropathy.
        J Am Soc Nephrol. 2003; 14: 908-917
        • White K.E.
        • Marshall S.M.
        • Bilous R.W.
        Prevalence of atubular glomeruli in type 2 diabetic patients with nephropathy.
        Nephrol Dial Transplant. 2008; 23: 3539-3545
        • Marcussen N.
        Atubular glomeruli and the structural basis for chronic renal failure.
        Lab Invest. 1992; 66: 265-284
        • Bader R.
        • Bader H.
        • Grund K.E.
        • et al.
        Structure and function of the kidney in diabetic glomerulosclerosis.
        Pathol Res Pract. 1980; 167: 204-216
        • Harris R.D.
        • Steffes M.W.
        • Bilous R.W.
        • Sutherland D.E.
        • Mauer S.M.
        Global glomerular sclerosis and glomerular arteriolar hyalinosis in insulin dependent diabetes.
        Kidney Int. 1991; 40: 107-114
        • Osterby R.
        • Parving H.H.
        • Nyberg G.
        • et al.
        A strong correlation between glomerular filtration rate and filtration surface in diabetic nephropathy.
        Diabetologia. 1988; 31: 265-270
        • Ziyadeh F.N.
        • Goldfarb S.
        The renal tubulointerstitium in diabetes mellitus.
        Kidney Int. 1991; 39: 464-475
        • Rodriguez-Iturbe B.
        • Johnson R.J.
        • Herrera-Acosta J.
        Tubulointerstitial damage and progression of renal failure.
        Kidney Int Suppl. 2005; 99: S82-S86
        • Humphreys B.D.
        Targeting pericyte differentation as a strategy to modulate kidney fibrosis in diabetic nephropathy.
        Semin Nephrol. 2012; 32: 463-470
        • Lewis E.J.
        • Hunsicker L.G.
        • Bain R.P.
        • Rohde R.D.
        The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy.
        N Engl J Med. 1993; 329: 1456-1462
        • Gurley S.B.
        • Coffman T.M.
        The renin-angiotensin system and diabetic nephropathy.
        Semin Nephrol. 2007; 27: 144-152
        • Brenner B.M.
        • Cooper M.E.
        • de Zeeuw D.
        • et al.
        Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy.
        N Engl J Med. 2001; 345: 861-869
        • Lewis E.J.
        • Hunsicker L.G.
        • Clarke W.R.
        • et al.
        Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes.
        N Engl J Med. 2001; 345: 851-860
        • Zatz R.
        • Dunn B.R.
        • Meyer T.W.
        • et al.
        Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension.
        J Clin Invest. 1986; 77: 1925-1930
        • Perico N.
        • Benigni A.
        • Remuzzi G.
        Present and future drug treatments for chronic kidney diseases: evolving targets in renoprotection.
        Nat Rev Drug Discov. 2008; 7: 936-953
        • Decleves A.E.
        • Sharma K.
        New pharmacological treatments for improving renal outcomes in diabetes.
        Nat Rev. 2010; 6: 371-380
        • de Borst M.H.
        • van Timmeren M.M.
        • Vaidya V.S.
        • et al.
        Induction of kidney injury molecule-1 in homozygous Ren2 rats is attenuated by blockade of the renin-angiotensin system or p38 MAP kinase.
        Am J Physiol. 2007; 292: F313-F320
        • Rosolowsky E.T.
        • Skupien J.
        • Smiles A.M.
        • et al.
        Risk for ESRD in type 1 diabetes remains high despite renoprotection.
        J Am Soc Nephrol. 2011; 22: 545-553
        • de Zeeuw D.
        Albuminuria: a target for treatment of type 2 diabetic nephropathy.
        Semin Nephrol. 2007; 27: 172-181
        • Yu Y.
        • Jin H.
        • Holder D.
        • et al.
        Urinary biomarkers trefoil factor 3 and albumin enable early detection of kidney tubular injury.
        Nat Biotechnol. 2010; 28: 470-477
        • Abrass C.K.
        Diabetic proteinuria.
        Am J Nephrol. 1984; 4: 337-346
        • Abbate M.
        • Zoja C.
        • Remuzzi G.
        How does proteinuria cause progressive renal damage?.
        J Am Soc Nephrol. 2006; 17: 2974-2984
        • Strutz F.M.
        EMT and proteinuria as progression factors.
        Kidney Int. 2009; 75: 475-481
        • Miltenyi M.
        • Korner A.
        • Tulassay T.
        • Szabo A.
        Tubular dysfunction in type I diabetes mellitus.
        Arch Dis Child. 1985; 60: 929-931
        • Mogensen C.E.
        • Christensen N.J.
        • Gundersen H.J.
        The acute effect of insulin on renal haemodynamics and protein excretion in diabetics.
        Diabetologia. 1978; 15: 153-157
        • Watts G.F.
        • Vlitos M.A.
        • Morris R.W.
        • Price R.G.
        Urinary N-acetyl-beta-D-glucosaminidase excretion in insulin-dependent diabetes mellitus: relation to microalbuminuria, retinopathy and glycaemic control.
        Diabete Metab. 1988; 14: 653-658
        • Gibb D.M.
        • Tomlinson P.A.
        • Dalton N.R.
        • et al.
        Renal tubular proteinuria and microalbuminuria in diabetic patients.
        Arch Dis Child. 1989; 64: 129-134
        • Vaidya V.S.
        • Niewczas M.A.
        • Ficociello L.H.
        • et al.
        Regression of microalbuminuria in type 1 diabetes is associated with lower levels of urinary tubular injury biomarkers, kidney injury molecule-1, and N-acetyl-beta-D-glucosaminidase.
        Kidney Int. 2011; 79: 464-470
        • Ziyadeh F.N.
        • Snipes E.R.
        • Watanabe M.
        • et al.
        High glucose induces cell hypertrophy and stimulates collagen gene transcription in proximal tubule.
        Am J Physiol. 1990; 259: F704-F714
        • Polhill T.S.
        • Saad S.
        • Poronnik P.
        • Fulcher G.R.
        • Pollock C.A.
        Short-term peaks in glucose promote renal fibrogenesis independently of total glucose exposure.
        Am J Physiol. 2004; 287: F268-F273
        • Ihm C.G.
        • Lee G.S.
        • Nast C.C.
        • et al.
        Early increased renal procollagen alpha 1(IV) mRNA levels in streptozotocin induced diabetes.
        Kidney Int. 1992; 41: 768-777
        • Christiansen J.S.
        • Frandsen M.
        • Parving H.H.
        Effect of intravenous glucose infusion on renal function in normal man and in insulin-dependent diabetics.
        Diabetologia. 1981; 21: 368-373
        • Vestri S.
        • Okamoto M.M.
        • de Freitas H.S.
        • et al.
        Changes in sodium or glucose filtration rate modulate expression of glucose transporters in renal proximal tubular cells of rat.
        J Membr Biol. 2001; 182: 105-112
        • Tabatabai N.M.
        • Sharma M.
        • Blumenthal S.S.
        • Petering D.H.
        Enhanced expressions of sodium-glucose cotransporters in the kidneys of diabetic Zucker rats.
        Diabetes Res Clin Pract. 2009; 83: e27-e30
        • Zhu Y.
        • Usui H.K.
        • Sharma K.
        Regulation of transforming growth factor beta in diabetic nephropathy: implications for treatment.
        Semin Nephrol. 2007; 27: 153-160
        • Ziyadeh F.N.
        • Sharma K.
        • Ericksen M.
        • Wolf G.
        Stimulation of collagen gene expression and protein synthesis in murine mesangial cells by high glucose is mediated by autocrine activation of transforming growth factor-beta.
        J Clin Invest. 1994; 93: 536-542
        • Fraser D.
        • Brunskill N.
        • Ito T.
        • Phillips A.
        Long-term exposure of proximal tubular epithelial cells to glucose induces transforming growth factor-beta 1 synthesis via an autocrine PDGF loop.
        Am J Pathol. 2003; 163: 2565-2574
        • Zhang M.
        • Fraser D.
        • Phillips A.
        ERK, p38, and Smad signaling pathways differentially regulate transforming growth factor-beta1 autoinduction in proximal tubular epithelial cells.
        Am J Pathol. 2006; 169: 1282-1293
        • Koesters R.
        • Kaissling B.
        • Lehir M.
        • et al.
        Tubular overexpression of transforming growth factor-beta1 induces autophagy and fibrosis but not mesenchymal transition of renal epithelial cells.
        Am J Pathol. 2010; 177: 632-643
        • Phillips A.O.
        • Steadman R.
        Diabetic nephropathy: the central role of renal proximal tubular cells in tubulointerstitial injury.
        Histol Histopathol. 2002; 17: 247-252
        • Han H.J.
        • Lee Y.J.
        • Park S.H.
        • Lee J.H.
        • Taub M.
        High glucose-induced oxidative stress inhibits Na+/glucose cotransporter activity in renal proximal tubule cells.
        Am J Physiol. 2005; 288: F988-F996
        • Zhong Q.
        • Kowluru R.A.
        Epigenetic changes in mitochondrial superoxide dismutase in the retina and the development of diabetic retinopathy.
        Diabetes. 2011; 60: 1304-1313
        • Tonna S.
        • El-Osta A.
        • Cooper M.E.
        • Tikellis C.
        Metabolic memory and diabetic nephropathy: potential role for epigenetic mechanisms.
        Nat Rev. 2010; 6: 332-341
        • Pergola P.E.
        • Raskin P.
        • Toto R.D.
        • et al.
        Bardoxolone methyl and kidney function in CKD with type 2 diabetes.
        N Engl J Med. 2011; 365: 327-336
        • Dinkova-Kostova A.T.
        • Liby K.T.
        • Stephenson K.K.
        • et al.
        Extremely potent triterpenoid inducers of the phase 2 response: correlations of protection against oxidant and inflammatory stress.
        Proc Natl Acad Sci U S A. 2005; 102: 4584-4589
        • Tan A.L.
        • Forbes J.M.
        • Cooper M.E.
        AGE, RAGE, and ROS in diabetic nephropathy.
        Semin Nephrol. 2007; 27: 130-143
        • Gugliucci A.
        • Bendayan M.
        Renal fate of circulating advanced glycated end products (AGE): evidence for reabsorption and catabolism of AGE-peptides by renal proximal tubular cells.
        Diabetologia. 1996; 39: 149-160
        • Youssef S.
        • Nguyen D.T.
        • Soulis T.
        • et al.
        Effect of diabetes and aminoguanidine therapy on renal advanced glycation end-product binding.
        Kidney Int. 1999; 55: 907-916
        • Tang S.C.
        • Leung J.C.
        • Chan L.Y.
        • Tsang A.W.
        • Lai K.N.
        Activation of tubular epithelial cells in diabetic nephropathy and the role of the peroxisome proliferator-activated receptor-gamma agonist.
        J Am Soc Nephrol. 2006; 17: 1633-1643
        • Tang S.C.
        • Chan L.Y.
        • Leung J.C.
        • et al.
        Differential effects of advanced glycation end-products on renal tubular cell inflammation.
        Nephrology (Carlton). 2011; 16: 417-425
        • Gallicchio M.A.
        • Bach L.A.
        Advanced glycation end products inhibit Na+ K+ ATPase in proximal tubule epithelial cells: role of cytosolic phospholipase A2alpha and phosphatidylinositol 4-phosphate 5-kinase gamma.
        Biochim Biophys Acta. 2010; 1803: 19-930
        • Fekete A.
        • Rosta K.
        • Wagner L.
        • et al.
        Na+,K+-ATPase is modulated by angiotensin II in diabetic rat kidney—another reason for diabetic nephropathy?.
        J Physiol. 2008; 586: 5337-5348
        • Sanchez Mejia R.O.
        • Lam B.K.
        • Arm J.P.
        Matrix-associated transforming growth factor-beta1 primes mouse bone marrow-derived mast cells for increased high-affinity Fc receptor for immunoglobulin E-dependent eicosanoid biosynthesis.
        Am J Respir Cell Mol Biol. 2000; 22: 557-565
        • Grgic I.
        • Campanholle G.
        • Bijol V.
        • et al.
        Targeted proximal tubule injury triggers interstitial fibrosis and glomerulosclerosis.
        Kidney Int. 2012; 82: 172-183
        • Tang S.
        • Leung J.C.
        • Abe K.
        • et al.
        Albumin stimulates interleukin-8 expression in proximal tubular epithelial cells in vitro and in vivo.
        J Clin Invest. 2003; 111: 515-527
        • Duffield J.S.
        Macrophages and immunologic inflammation of the kidney.
        Semin Nephrol. 2010; 30: 234-254
        • Vernon M.A.
        • Mylonas K.J.
        • Hughes J.
        Macrophages and renal fibrosis.
        Semin Nephrol. 2010; 30: 302-317
        • Chow F.Y.
        • Nikolic-Paterson D.J.
        • Ozols E.
        • et al.
        Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice.
        Kidney Int. 2006; 69: 73-80
        • Vielhauer V.
        • Kulkarni O.
        • Reichel C.A.
        • Anders H.J.
        Targeting the recruitment of monocytes and macrophages in renal disease.
        Semin Nephrol. 2010; 30: 318-333
        • Banba N.
        • Nakamura T.
        • Matsumura M.
        • et al.
        Possible relationship of monocyte chemoattractant protein-1 with diabetic nephropathy.
        Kidney Int. 2000; 58: 684-690
        • Morii T.
        • Fujita H.
        • Narita T.
        • et al.
        Association of monocyte chemoattractant protein-1 with renal tubular damage in diabetic nephropathy.
        J Diabetes Complications. 2003; 17: 11-15
        • Takebayashi K.
        • Matsumoto S.
        • Aso Y.
        • Inukai T.
        Aldosterone blockade attenuates urinary monocyte chemoattractant protein-1 and oxidative stress in patients with type 2 diabetes complicated by diabetic nephropathy.
        J Clin Endocrinol Metab. 2006; 91: 2214-2217
        • Fardon N.J.
        • Wilkinson R.
        • Thomas T.H.
        Abnormalities in primary granule exocytosis in neutrophils from type I diabetic patients with nephropathy.
        Clin Sci (Lond). 2002; 102: 69-75
        • Takahashi T.
        • Hato F.
        • Yamane T.
        • et al.
        Increased spontaneous adherence of neutrophils from type 2 diabetic patients with overt proteinuria: possible role of the progression of diabetic nephropathy.
        Diabetes Care. 2000; 23: 417-418
        • Tang S.C.
        • Leung J.C.
        • Lai K.N.
        Diabetic tubulopathy: an emerging entity.
        Contrib Nephrol. 2011; 170: 124-134
        • Moon J.Y.
        • Jeong K.H.
        • Lee T.W.
        • et al.
        Aberrant recruitment and activation of T cells in diabetic nephropathy.
        Am J Nephrol. 2012; 35: 164-194
        • Hagerty D.T.
        • Allen P.M.
        Processing and presentation of self and foreign antigens by the renal proximal tubule.
        J Immunol. 1992; 148: 2324-2330
        • Lai K.N.
        • Leung J.C.
        • Chan L.Y.
        • Guo H.
        • Tang S.C.
        Interaction between proximal tubular epithelial cells and infiltrating monocytes/T cells in the proteinuric state.
        Kidney Int. 2007; 71: 526-538
        • Pickup J.C.
        • Mattock M.B.
        • Chusney G.D.
        • Burt D.
        NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X.
        Diabetologia. 1997; 40: 1286-1292
        • Lin M.
        • Yiu W.H.
        • Wu H.J.
        • et al.
        Toll-like receptor 4 promotes tubular inflammation in diabetic nephropathy.
        J Am Soc Nephrol. 2012; 23: 86-102
        • Horlyck A.
        • Gundersen H.J.
        • Osterby R.
        The cortical distribution pattern of diabetic glomerulopathy.
        Diabetologia. 1986; 29: 146-150
        • Huang H.C.
        • Preisig P.A.
        G1 kinases and transforming growth factor-beta signaling are associated with a growth pattern switch in diabetes-induced renal growth.
        Kidney Int. 2000; 58: 162-172
        • Thomson S.C.
        • Deng A.
        • Bao D.
        • et al.
        Ornithine decarboxylase, kidney size, and the tubular hypothesis of glomerular hyperfiltration in experimental diabetes.
        J Clin Invest. 2001; 107: 217-224
        • Okada R.
        • Yasuda Y.
        • Tsushita K.
        • et al.
        Glomerular hyperfiltration in prediabetes and prehypertension.
        Nephrol Dial Transplant. 2012; 27: 1821-1825
        • Verzola D.
        • Gandolfo M.T.
        • Gaetani G.
        • et al.
        Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy.
        Am J Physiol. 2008; 295: F1563-F1573
        • Satriano J.
        • Mansoury H.
        • Deng A.
        • et al.
        Transition of kidney tubule cells to a senescent phenotype in early experimental diabetes.
        Am J Physiol Cell Physiol. 2010; 299: C374-C380
        • Hayflick L.
        The limited in vitro lifetime of human diploid cell strains.
        Exp Cell Res. 1965; 37: 614-636
        • Yang L.
        • Besschetnova T.Y.
        • Brooks C.R.
        • Shah J.V.
        • Bonventre J.V.
        Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury.
        Nat Med. 2010; 16 (1p following 143): 535-543
        • Abraham R.T.
        Cell cycle checkpoint signaling through the ATM and ATR kinases.
        Genes Dev. 2001; 15: 2177-2196
        • Goodarzi A.A.
        • Block W.D.
        • Lees-Miller S.P.
        The role of ATM and ATR in DNA damage-induced cell cycle control.
        Prog Cell Cycle Res. 2003; 5: 393-411
        • Kobayashi T.
        • Okada H.
        • Inoue T.
        • Kanno Y.
        • Suzuki H.
        Tubular expression of connective tissue growth factor correlates with interstitial fibrosis in type 2 diabetic nephropathy.
        Nephrol Dial Transplant. 2006; 21: 548-549
        • Guha M.
        • Xu Z.G.
        • Tung D.
        • Lanting L.
        • Natarajan R.
        Specific down-regulation of connective tissue growth factor attenuates progression of nephropathy in mouse models of type 1 and type 2 diabetes.
        FASEB J. 2007; 21: 3355-3368