Advertisement

Cell Therapy for Diabetic Nephropathy: Is the Future, Now?

      Summary

      Cell-based therapy, designed to promote angiogenesis and improve organ function, has been under investigation for the treatment of ischemic heart disease for more than 10 years. Although believed to work primarily by repairing the microvasculature, this form of therapy has not been examined in the setting of chronic kidney disease caused by diabetes in which capillary rarefaction plays a pivotal pathogenetic role. Indeed, despite disease-associated dysfunction, the favorable safety profile of autologous, bone marrow–derived angiogenic cells and their efficacy in animal studies of chronic kidney disease would seem to provide a basis for clinical trials in advanced diabetic nephropathy.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Nephrology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lewis E.J.
        • Hunsicker L.G.
        • Bain R.P.
        • et al.
        The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy.
        N Engl J Med. 1993; 329: 1456-1462
        • Baumgartner-Parzer S.M.
        • Wagner L.
        • Pettermann M.
        • et al.
        High-glucose–triggered apoptosis in cultured endothelial cells.
        Diabetes. 1995; 44: 1323-1327
        • Ho F.M.
        • Liu S.H.
        • Liau C.S.
        • et al.
        High glucose-induced apoptosis in human endothelial cells is mediated by sequential activations of c-Jun NH(2)-terminal kinase and caspase-3.
        Circulation. 2000; 101: 2618-2624
        • Mizutani M.
        • Kern T.S.
        • Lorenzi M.
        Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy.
        J Clin Invest. 1996; 97: 2883-2890
        • Frustaci A.
        • Kajstura J.
        • Chimenti C.
        • et al.
        Myocardial cell death in human diabetes.
        Circ Res. 2000; 87: 1123-1132
        • Isermann B.
        • Vinnikov I.A.
        • Madhusudhan T.
        • et al.
        Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis.
        Nat Med. 2007; 13: 1349-1358
        • Mauer S.
        • Steffes M.
        • Ellis E.
        • et al.
        Structural-functional relationships in diabetic nephropathy.
        J Clin Invest. 1984; 74: 1143-1155
        • Lindenmeyer M.T.
        • Kretzler M.
        • Boucherot A.
        • et al.
        Interstitial vascular rarefaction and reduced VEGF-A expression in human diabetic nephropathy.
        J Am Soc Nephrol. 2007; 18: 1765-1776
        • Laplante P.
        • Sirois I.
        • Raymond M.A.
        • et al.
        Caspase-3-mediated secretion of connective tissue growth factor by apoptotic endothelial cells promotes fibrosis.
        Cell Death Differ. 2010; 17: 291-303
        • Bohle A.
        • Mackensen-Haen S.
        • Wehrmann M.
        Significance of postglomerular capillaries in the pathogenesis of chronic renal failure.
        Kidney Blood Press Res. 1996; 19: 191-195
        • Bader R.
        • Bader H.
        • Grund K.E.
        • et al.
        Structure and function of the kidney in diabetic glomerulosclerosis.
        Pathol Res Pract. 1980; 167: 204-216
        • Gilbert R.E.
        • Cooper M.E.
        The tubulointerstitium in progressive diabetic kidney disease: more than an aftermath of glomerular injury?.
        Kidney Int. 1999; 56: 1627-1637
        • Pagtalunan M.E.
        • Miller P.L.
        • Jumping-Eagle S.
        • et al.
        Podocyte loss and progressive glomerular injury in type II diabetes.
        J Clin Invest. 1997; 99: 342-348
        • Langham R.G.
        • Kelly D.J.
        • Cox A.J.
        • et al.
        Proteinuria and the expression of the podocyte slit diaphragm protein, nephrin, in diabetic nephropathy: effects of angiotensin converting enzyme inhibition.
        Diabetologia. 2002; 45: 1572-1576
        • Advani A.
        • Gilbert R.E.
        The endothelium in diabetic nephropathy.
        Semin Nephrol. 2012; 32: 199-207
        • Risau W.
        • Sariola H.
        • Zerwes H.G.
        • et al.
        Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies.
        Development. 1988; 102: 471-478
        • Folkman J.
        • Shing Y.
        Angiogenesis.
        J Biol Chem. 1992; 267: 10931-10934
        • Asahara T.
        • Murohara T.
        • Sullivan A.
        • et al.
        Isolation of putative progenitor endothelial cells for angiogenesis.
        Science. 1997; 275: 964-967
        • Richardson M.R.
        • Yoder M.C.
        Endothelial progenitor cells: quo vadis?.
        J Mol Cell Cardiol. 2011; 50: 266-272
        • Hur J.
        • Yoon C.H.
        • Kim H.S.
        • et al.
        Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis.
        Arterioscler Thromb Vasc Biol. 2004; 24: 288-293
        • Yoder M.C.
        • Mead L.E.
        • Prater D.
        • et al.
        Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals.
        Blood. 2007; 109: 1801-1809
        • Urbich C.
        • De Souza A.I.
        • Rossig L.
        • et al.
        Proteomic characterization of human early pro-angiogenic cells.
        J Mol Cell Cardiol. 2011; 50: 333-336
        • Psaltis P.J.
        • Zannettino A.C.
        • Worthley S.G.
        • et al.
        Concise review: mesenchymal stromal cells: potential for cardiovascular repair.
        Stem Cells. 2008; 26: 2201-2210
        • Bababeygy S.R.
        • Cheshier S.H.
        • Hou L.C.
        • et al.
        Hematopoietic stem cell-derived pericytic cells in brain tumor angio-architecture.
        Stem Cells Dev. 2008; 17: 11-18
        • Mirotsou M.
        • Jayawardena T.M.
        • Schmeckpeper J.
        • et al.
        Paracrine mechanisms of stem cell reparative and regenerative actions in the heart.
        J Mol Cell Cardiol. 2011; 50: 280-289
        • Bi B.
        • Schmitt R.
        • Israilova M.
        • et al.
        Stromal cells protect against acute tubular injury via an endocrine effect.
        J Am Soc Nephrol. 2007; 18: 2486-2496
        • Yuen D.A.
        • Connelly K.A.
        • Advani A.
        • et al.
        Culture-modified bone marrow cells attenuate cardiac and renal injury in a chronic kidney disease rat model via a novel antifibrotic mechanism.
        PLoS One. 2010; 5: e9543
        • Egan C.G.
        • Lavery R.
        • Caporali F.
        • et al.
        Generalised reduction of putative endothelial progenitors and CXCR4-positive peripheral blood cells in type 2 diabetes.
        Diabetologia. 2008; 51: 1296-1305
        • Fadini G.P.
        • Boscaro E.
        • de Kreutzenberg S.
        • et al.
        Time course and mechanisms of circulating progenitor cell reduction in the natural history of type 2 diabetes.
        Diabetes Care. 2010; 33: 1097-1102
        • Loomans C.J.
        • de Koning E.J.
        • Staal F.J.
        • et al.
        Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes.
        Diabetes. 2004; 53: 195-199
        • Dessapt C.
        • Karalliedde J.
        • Hernandez-Fuentes M.
        • et al.
        Circulating vascular progenitor cells in patients with type 1 diabetes and microalbuminuria.
        Diabetes Care. 2010; 33: 875-877
        • Makino H.
        • Okada S.
        • Nagumo A.
        • et al.
        Decreased circulating CD34+ cells are associated with progression of diabetic nephropathy.
        Diabet Med. 2009; 26: 171-173
        • Fadini G.P.
        • Sartore S.
        • Schiavon M.
        • et al.
        Diabetes impairs progenitor cell mobilisation after hindlimb ischaemia-reperfusion injury in rats.
        Diabetologia. 2006; 49: 3075-3084
        • Boyle A.J.
        • Whitbourn R.
        • Schlicht S.
        • et al.
        Intra-coronary high-dose CD34+ stem cells in patients with chronic ischemic heart disease: a 12-month follow-up.
        Int J Cardiol. 2006; 109: 21-27
        • Segal M.S.
        • Shah R.
        • Afzal A.
        • et al.
        Nitric oxide cytoskeletal-induced alterations reverse the endothelial progenitor cell migratory defect associated with diabetes.
        Diabetes. 2006; 55: 102-109
        • Assmus B.
        • Schachinger V.
        • Teupe C.
        • et al.
        Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI).
        Circulation. 2002; 106: 3009-3017
        • Vasa M.
        • Fichtlscherer S.
        • Aicher A.
        • et al.
        Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease.
        Circ Res. 2001; 89: E1-E7
        • Werner N.
        • Kosiol S.
        • Schiegl T.
        • et al.
        Circulating endothelial progenitor cells and cardiovascular outcomes.
        N Engl J Med. 2005; 353: 999-1007
        • Hill J.M.
        • Zalos G.
        • Halcox J.P.
        • et al.
        Circulating endothelial progenitor cells, vascular function, and cardiovascular risk.
        N Engl J Med. 2003; 348: 593-600
        • Abdel-Latif A.
        • Bolli R.
        • Tleyjeh I.M.
        • et al.
        Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis.
        Arch Intern Med. 2007; 167: 989-997
        • Yousef M.
        • Schannwell C.M.
        • Kostering M.
        • et al.
        The BALANCE study: clinical benefit and long-term outcome after intracoronary autologous bone marrow cell transplantation in patients with acute myocardial infarction.
        J Am Coll Cardiol. 2009; 53: 2262-2269
        • Menasche P.
        Cardiac cell therapy: lessons from clinical trials.
        J Mol Cell Cardiol. 2011; 50: 258-265
        • Schachinger V.
        • Erbs S.
        • Elsasser A.
        • et al.
        Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction.
        N Engl J Med. 2006; 355: 1210-1221
        • Assmus B.
        • Rolf A.
        • Erbs S.
        • et al.
        Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction.
        Circ Heart Fail. 2010; 3: 89-96
        • Abdel-Latif A.
        • Bolli R.
        • Zuba-Surma E.K.
        • et al.
        Granulocyte colony-stimulating factor therapy for cardiac repair after acute myocardial infarction: a systematic review and meta-analysis of randomized controlled trials.
        Am Heart J. 2008; 156 (e219): 216-226
        • Zaruba M.M.
        • Theiss H.D.
        • Vallaster M.
        • et al.
        Synergy between CD26/DPP-IV inhibition and G-CSF improves cardiac function after acute myocardial infarction.
        Cell Stem Cell. 2009; 4: 313-323
        • Steinhauser M.L.
        • Lee R.T.
        Cardiovascular regeneration: pushing and pulling on progenitors.
        Cell Stem Cell. 2009; 4: 277-278
        • Fadini G.P.
        • Boscaro E.
        • Albiero M.
        • et al.
        The oral dipeptidyl peptidase-4 inhibitor sitagliptin increases circulating endothelial progenitor cells in patients with type 2 diabetes: possible role of stromal-derived factor-1alpha.
        Diabetes Care. 2010; 33: 7-1609
        • Larochelle A.
        • Krouse A.
        • Metzger M.
        • et al.
        AMD3100 mobilizes hematopoietic stem cells with long-term repopulating capacity in nonhuman primates.
        Blood. 2006; 107: 3772-3778
        • Williams-Herman D.
        • Round E.
        • Swern A.S.
        • et al.
        Safety and tolerability of sitagliptin in patients with type 2 diabetes: a pooled analysis.
        BMC Endocr Disord. 2008; 8: 14
        • Frederich R.
        • Alexander J.H.
        • Fiedorek F.T.
        • et al.
        A systematic assessment of cardiovascular outcomes in the saxagliptin drug development program for type 2 diabetes.
        Postgrad Med. 2010; 122: 16-27
      1. Gallwitz B, Uhlig-Laske G, Bhattacharaya S. Linagliptin has similar efficacy to glimepiride but improved cardiovascular safety over 2 years in patients with type 2 diabetes inadequately controlled on metformin [abstract 0039-LB]. Proceedings of the American Diabetes Association; Alexandria, VA, 2011.

      2. Johansen O, Neubacher D, von Eynatten M. Cardiovascular risk with linagliptin in patients with type 2 diabetes: a pre-specified, prospective, and adjudicated meta-analysis from a large phase III program [abstract 0030-LB]. Proceedings of the American Diabetes Association; Alexandria, VA, 2011.

        • Gallagher K.A.
        • Liu Z.J.
        • Xiao M.
        • et al.
        Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha.
        J Clin Invest. 2007; 117: 1249-1259
        • Segers V.F.
        • Tokunou T.
        • Higgins L.J.
        • et al.
        Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction.
        Circulation. 2007; 116: 1683-1692
        • Saxena A.
        • Fish J.E.
        • White M.D.
        • et al.
        Stromal cell-derived factor-1alpha is cardioprotective after myocardial infarction.
        Circulation. 2008; 117: 2224-2231
        • Hu X.
        • Dai S.
        • Wu W.J.
        • et al.
        Stromal cell derived factor-1 alpha confers protection against myocardial ischemia/reperfusion injury: role of the cardiac stromal cell derived factor-1 alpha CXCR4 axis.
        Circulation. 2007; 116: 654-663
        • Sasaki K.
        • Heeschen C.
        • Aicher A.
        • et al.
        Ex vivo pretreatment of bone marrow mononuclear cells with endothelial NO synthase enhancer AVE9488 enhances their functional activity for cell therapy.
        Proc Natl Acad Sci U S A. 2006; 103: 14537-14541
        • Wu L.
        • Cox A.
        • Roe C.
        • et al.
        Transforming growth factor β1 and renal injury following subtotal nephrectomy in the rat: role of the renin-angiotensin system.
        Kidney Int. 1997; 51: 1553-1567
        • Amann K.
        • Breitbach M.
        • Ritz E.
        • et al.
        Myocyte/capillary mismatch in the heart of uremic patients.
        J Am Soc Nephrol. 1998; 9: 1018-1022
        • Amann K.
        • Wiest G.
        • Zimmer G.
        • et al.
        Reduced capillary density in the myocardium of uremic rats—a stereological study.
        Kidney Int. 1992; 42: 1079-1085
        • Zhang Y.
        • Yuen D.A.
        • Advani S.L.
        • et al.
        Early outgrowth bone marrow cells attenuate renal injury and dysfunction via an antioxidant effect in a mouse model of type 2 diabetes.
        Diabetes. 2012; 61: 2114-2125
        • Hare J.M.
        • Traverse J.H.
        • Henry T.D.
        • et al.
        A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (Prochymal) after acute myocardial infarction.
        J Am Coll Cardiol. 2009; 54: 2277-2286
        • Losordo D.W.
        • Schatz R.A.
        • White C.J.
        • et al.
        Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial.
        Circulation. 2007; 115: 3165-3172
        • Gilbert R.E.
        • Tsalamandris C.
        • Allen T.J.
        • et al.
        Early nephropathy predicts vision-threatening retinal disease in patients with type I diabetes mellitus.
        J Am Soc Nephrol. 1998; 9: 85-89
        • Bressler N.M.
        • Beck R.W.
        • Ferris 3rd, F.L.
        Panretinal photocoagulation for proliferative diabetic retinopathy.
        N Engl J Med. 2011; 365: 1520-1526
        • Brunner S.
        • Schernthaner G.H.
        • Satler M.
        • et al.
        Correlation of different circulating endothelial progenitor cells to stages of diabetic retinopathy: first in vivo data.
        Invest Ophthalmol Vis Sci. 2009; 50: 392-398