Advertisement
Research Article| Volume 33, ISSUE 3, P257-264, May 2013

Download started.

Ok

Acid-Base and Potassium Homeostasis

  • L. Lee Hamm
    Correspondence
    Address reprint requests to L. Lee Hamm, MD, Professor and Greenberg Chair of Medicine, Executive Vice Dean, Department of Medicine, SL-12, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112
    Affiliations
    Departments of Medicine and Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA

    Medicine Service, Southeast Louisiana Veterans Health Care System, New Orleans, LA
    Search for articles by this author
  • Kathleen S. Hering-Smith
    Affiliations
    Departments of Medicine and Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA
    Search for articles by this author
  • Nazih L. Nakhoul
    Affiliations
    Departments of Medicine and Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA
    Search for articles by this author

      Summary

      Acid-base balance and potassium disorders are often clinically linked. Importantly, acid-base disorders alter potassium transport. In general, acidosis causes decreased K+ secretion and increased reabsorption in the collecting duct. Alkalosis has the opposite effects, often leading to hypokalemia. Potassium disorders also influence acid-base homeostasis. Potassium depletion causes increased H+ secretion, ammoniagenesis and H-K-ATPase activity. Hyperkalemia decreases ammoniagenesis and NH4+ transport in the thick ascending limb. Some combined potassium and acid-base disorders involve indirect factors such as aldosterone, impaired renal function, volume depletion, and diarrhea. In summary, disorders of potassium and acid-base homeostasis are mechanistically linked and clinically important.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Nephrology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Oster J.R.
        • Perez G.O.
        • Vaamonde C.A.
        Relationship between blood pH and potassium and phosphorus during acute metabolic acidosis.
        Am J Physiol. 1978; 235: F345-F351
        • Fulop M.
        Serum potassium in lactic acidosis and ketoacidosis.
        N Engl J Med. 1979; 300: 1087-1089
        • Adrogue H.J.
        • Madias N.E.
        Changes in plasma potassium concentration during acute acid-base disturbances.
        Am J Med. 1981; 71: 456-467
        • Perez G.O.
        • Oster J.R.
        • Vaamonde C.A.
        Serum potassium concentration in acidemic states.
        Nephron. 1981; 27: 233-243
        • Wiederseiner J.M.
        • Muser J.
        • Lutz T.
        • Hulter H.N.
        • Krapf R.
        Acute metabolic acidosis: characterization and diagnosis of the disorder and the plasma potassium response.
        J Am Soc Nephrol. 2004; 15: 1589-1596
        • Aronson P.S.
        • Giebisch G.
        Effects of pH on potassium: new explanations for old observations.
        J Am Soc Nephrol. 2011; 22: 1981-1989
        • Giebisch G.
        Renal potassium transport: mechanisms and regulation.
        Am J Physiol. 1998; 274: F817-F833
        • Kibble J.D.
        • Wareing M.
        • Wilson R.W.
        • Green R.
        Effect of barium on potassium diffusion across the proximal convoluted tubule of the anesthetized rat.
        Am J Physiol. 1995; 268: F778-F783
        • Wareing M.
        • Wilson R.W.
        • Kibble J.D.
        • Green R.
        Estimated potassium reflection coefficient in perfused proximal convoluted tubules of the anaesthetized rat in vivo.
        J Physiol. 1995; 488: 153-161
        • Hunter M.
        • Kawahara K.
        • Giebisch G.
        Potassium channels along the nephron.
        Fed Proc. 1986; 45: 2723-2726
        • Filipovic D.
        • Sackin H.
        Stretch- and volume-activated channels in isolated proximal tubule cells.
        Am J Physiol. 1992; 262: F857-70
        • Kawahara K.
        • Hunter M.
        • Giebisch G.
        Potassium channels in Necturus proximal tubule.
        Am J Physiol. 1987; 253: F488-F494
        • Greger R.
        Ion transport mechanisms in thick ascending limb of Henle's loop of mammalian nephron.
        Physiol Rev. 1985; 65: 760-797
        • Hebert S.C.
        • Andreoli T.E.
        Control of NaCl transport in the thick ascending limb.
        Am J Physiol. 1984; 246: F745-F756
        • Mennitt P.A.
        • Wade J.B.
        • Ecelbarger C.A.
        • Palmer L.G.
        • Frindt G.
        Localization of ROMK channels in the rat kidney.
        J Am Soc Nephrol. 1997; 8: 1823-1830
        • Giebisch G.
        • Klein-Robbenhaar G.
        • Klein-Robbenhaar J.
        • Ratheiser K.
        • Unwin R.
        Renal and extrarenal sites of action of diuretics.
        Cardiovasc Drugs Ther. 1993; 7: 11-21
        • Okusa M.D.
        • Unwin R.J.
        • Velazquez H.
        • Giebisch G.
        • Wright F.S.
        Active potassium absorption by the renal distal tubule.
        Am J Physiol. 1992; 262: F488-F493
        • Wright F.S.
        • Giebisch G.
        Renal potassium transport: contributions of individual nephron segments and populations.
        Am J Physiol. 1978; 235: F515-F527
        • Kaissling B.
        Structural aspects of adaptive changes in renal electrolyte excretion.
        Am J Physiol. 1982; 243: F211-F226
        • Madsen K.M.
        • Tisher C.C.
        Structural-functional relationship along the distal nephron.
        Am J Physiol. 1986; 250: F1-15
        • Giebisch G.
        • Wang W.
        Potassium transport: from clearance to channels and pumps.
        Kidney Int. 1996; 49: 1624-1631
        • Malnic G.
        • Klose R.M.
        • Giebisch G.
        Micropuncture study of renal potassium excretion in the rat.
        Am J Physiol. 1964; 206: 674-686
        • Liu W.
        • Schreck C.
        • Coleman R.A.
        • Wade J.B.
        • Hernandez Y.
        • Zavilowitz B.
        • et al.
        Role of NKCC in BK channel-mediated net K+ secretion in the CCD.
        Am J Physiol Renal Physiol. 2011; 301: F1088-F1097
        • Khuri R.N.
        • Strieder W.N.
        • Giebisch G.
        Effects of flow rate and potassium intake on distal tubular potassium transfer.
        Am J Physiol. 1975; 228: 1249-1261
        • Malnic G.
        • Berliner R.W.
        • Giebisch G.
        Flow dependence of K+ secretion in cortical distal tubules of the rat.
        Am J Physiol. 1989; 256: F932-F941
        • Stanton B.A.
        • Giebisch G.
        Effects of pH on potassium transport by renal distal tubule.
        Am J Physiol. 1982; 242: F544-F551
        • Choe H.
        • Zhou H.
        • Palmer L.G.
        • Sackin H.
        A conserved cytoplasmic region of ROMK modulates pH sensitivity, conductance, and gating.
        Am J Physiol. 1997; 273: F516-F529
        • Wang W.H.
        • Schwab A.
        • Giebisch G.
        Regulation of small-conductance K+ channel in apical membrane of rat cortical collecting tubule.
        Am J Physiol. 1990; 259: F494-F502
        • Schlatter E.
        • Haxelmans S.
        • Hirsch J.
        • Leipziger J.
        pH dependence of K+ conductances of rat cortical collecting duct principal cells.
        Pflugers Arch. 1994; 428: 631-640
        • Nakhoul N.L.
        • Hering-Smith K.S.
        • Abdulnour-Nakhoul S.M.
        • Hamm L.L.
        Ammonium interaction with the epithelial sodium channel.
        Am J Physiol Renal Physiol. 2001; 281: F493-F502
        • Hamm L.L.
        • Gillespie C.
        • Klahr S.
        NH4Cl inhibition of transport in the rabbit cortical collecting tubule.
        Am J Physiol. 1985; 248: F631-7
      1. Milton AE, Weiner ID. Intracellular pH regulation in the rabbit cortical collecting duct A-type intercalated cell. Am J Physiol. 1997;273:t-7.

        • Silver R.B.
        • Mennitt P.A.
        • Satlin L.M.
        Stimulation of apical H-K-ATPase in intercalated cells of cortical collecting duct with chronic metabolic acidosis.
        Am J Physiol. 1996; 270: F539-F547
        • Weiner I.D.
        • Milton A.E.
        H(+)-K(+)-ATPase in rabbit cortical collecting duct B-type intercalated cell.
        Am J Physiol. 1996; 270: F518-F530
        • Wingo C.S.
        Effect of acidosis on chloride transport in the cortical thick ascending limb of Henle perfused in vitro.
        J Clin Invest. 1986; 78: 1324-1330
        • Scandling J.D.
        • Ornt D.B.
        Mechanism of potassium depletion during chronic metabolic acidosis in the rat.
        Am J Physiol. 1987; 252: F122-F130
        • Gennari F.J.
        • Cohen J.J.
        Role of the kidney in potassium homeostasis: lessons from acid-base disturbances.
        Kidney Int. 1975; 8: 1-5
        • Carlisle E.J.
        • Donnelly S.M.
        • Ethier J.H.
        • Quaggin S.E.
        • Kaiser U.B.
        • Vasuvattakul S.
        • et al.
        Modulation of the secretion of potassium by accompanying anions in humans.
        Kidney Int. 1991; 39: 1206-1212
        • Ellison D.H.
        • Velazquez H.
        • Wright F.S.
        Mechanisms of sodium, potassium and chloride transport by the renal distal tubule.
        Miner Electrolyte Metab. 1987; 13: 422-432
        • Wang W.H.
        Regulation of the hyperpolarization-activated K+ channel in the lateral membrane of the cortical collecting duct.
        J Gen Physiol. 1995; 106: 25-43
        • Adam W.R.
        • Koretsky A.P.
        • Weiner M.W.
        31P-NMR in vivo measurement of renal intracellular pH: effects of acidosis and K+ depletion in rats.
        Am J Physiol. 1986; 251: F904-F910
        • Kunau Jr, R.T.
        • Frick A.
        • Rector Jr, F.C.
        • Seldin D.W.
        Micropuncture study of the proximal tubular factors responsible for the maintenance of alkalosis during potassium deficiency in the rat.
        Clin Sci. 1968; 34: 223-231
        • Rector Jr, F.C.
        • Bloomer H.A.
        • Seldin D.W.
        Effect of potassium deficiency on the reabsorption of bicarbonate in the proximal tubule of the rat kidney.
        J Clin Invest. 1964; 43: 1976-1982
        • Elkjaer M.L.
        • Kwon T.H.
        • Wang W.
        • Nielsen J.
        • Knepper M.A.
        • Frokiaer J.
        • et al.
        Altered expression of renal NHE3, TSC, BSC-1, and ENaC subunits in potassium-depleted rats.
        Am J Physiol Renal Physiol. 2002; 283: F1376-F1388
        • Soleimani M.
        • Bergman J.A.
        • Hosford M.A.
        • McKinney T.D.
        Potassium depletion increases luminal Na+/H+ exchange and basolateral Na+:CO3=:HCO3- cotransport in rat renal cortex.
        J Clin Invest. 1990; 86: 1076-1083
        • Amlal H.
        • Habo K.
        • Soleimani M.
        Potassium deprivation upregulates expression of renal basolateral Na(+)-HCO(3)(−) cotransporter (NBC-1).
        Am J Physiol Renal Physiol. 2000; 279: F532-43
        • Soleimani M.
        Potassium-depletion metabolic alkalosis.
        in: Gennari F.J. Adrogue H.J. Galla J.H. Madias N.E., Acid-base disorders and their treatment. Taylor & Francis, Boca Raton, FL2005: 553-584
        • Silver R.B.
        • Soleimani M.
        H+-K+-ATPases: regulation and role in pathophysiological states.
        Am J Physiol. 1999; 276: F799-811
        • Capasso G.
        • Jaeger P.
        • Giebisch G.
        • Guckian V.
        • Malnic G.
        Renal bicarbonate reabsorption in the rat. II. Distal tubule load dependence and effect of hypokalemia.
        J Clin Invest. 1987; 80: 409-414
        • Bailey M.
        • Capasso G.
        • Agulian S.
        • Giebisch G.
        • Unwin R.
        The relationship between distal tubular proton secretion and dietary potassium depletion: evidence for up-regulation of H+-ATPase.
        Nephrol Dial Transplant. 1999; 14: 1435-1440
        • Bailey M.A.
        • Fletcher R.M.
        • Woodrow D.F.
        • Unwin R.J.
        • Walter S.J.
        Upregulation of H+-ATPase in the distal nephron during potassium depletion: structural and functional evidence.
        Am J Physiol. 1998; 275: F878-F884
        • Zhou X.
        • Wingo C.S.
        H-K-ATPase enhancement of Rb efflux by cortical collecting duct.
        Am J Physiol. 1992; 263: F43-F48
        • Silver R.B.
        • Breton S.
        • Brown D.
        Potassium depletion increases proton pump (H(+)-ATPase) activity in intercalated cells of cortical collecting duct.
        Am J Physiol Renal Physiol. 2000; 279: F195-F202
        • Nakamura S.
        • Wang Z.
        • Galla J.H.
        • Soleimani M.
        K+ depletion increases HCO3- reabsorption in OMCD by activation of colonic H(+)-K(+)-ATPase.
        Am J Physiol. 1998; 274: F687-F692
        • Nakamura S.
        • Amlal H.
        • Galla J.H.
        • Soleimani M.
        Colonic H+-K+-ATPase is induced and mediates increased HCO3- reabsorption in inner medullary collecting duct in potassium depletion.
        Kidney Int. 1998; 54: 1233-1239
        • DuBose Jr, T.D.
        • Good D.W.
        Effects of chronic hyperkalemia on renal production and proximal tubule transport of ammonium in rats.
        Am J Physiol. 1991; 260: F680-F687
        • DuBose Jr, T.D.
        • Good D.W.
        Chronic hyperkalemia impairs ammonium transport and accumulation in the inner medulla of the rat.
        J Clin Invest. 1992; 90: 1443-1449
        • Jones J.W.
        • Sebastian A.
        • Hulter H.N.
        • Schambelan M.
        • Sutton J.M.
        • Biglieri E.G.
        Systemic and renal acid-base effects of chronic dietary potassium depletion in humans.
        Kidney Int. 1982; 21: 402-410
        • Tizianello A.
        • Garibotto G.
        • Robaudo C.
        • Saffioti S.
        • Pontremoli R.
        • Bruzzone M.
        • et al.
        Renal ammoniagenesis in humans with chronic potassium depletion.
        Kidney Int. 1991; 40: 772-778
        • Nakamura S.
        • Amlal H.
        • Galla J.H.
        • Soleimani M.
        NH4+ secretion in inner medullary collecting duct in potassium deprivation: role of colonic H+-K+-ATPase.
        Kidney Int. 1999; 56: 2160-2167
        • Hernandez R.E.
        • Schambelan M.
        • Cogan M.G.
        • Colman J.
        • Morris Jr, R.C.
        • Sebastian A.
        Dietary NaCl determines severity of potassium depletion-induced metabolic alkalosis.
        Kidney Int. 1987; 31: 1356-1367
        • Young D.B.
        • Jackson T.E.
        Effects of aldosterone on potassium distribution.
        Am J Physiol. 1982; 243: R526-R530
        • Clark B.A.
        • Brown R.S.
        • Epstein F.H.
        Effect of atrial natriuretic peptide on potassium-stimulated aldosterone secretion: potential relevance to hypoaldosteronism in man.
        J Clin Endocrinol Metab. 1992; 75: 399-403
        • Chan R.
        • Sealey J.E.
        • Michelis M.F.
        • Swan A.
        • Pfaffle A.E.
        • DeVita M.V.
        • et al.
        Renin-aldosterone system can respond to furosemide in patients with hyperkalemic hyporeninism.
        J Lab Clin Med. 1998; 132: 229-235
        • Kassirer J.P.
        • London A.M.
        • Goldman D.M.
        • Schwartz W.B.
        On the pathogenesis of metabolic alkalosis in hyperaldosteronism.
        Am J Med. 1970; 49: 306-315
        • Gonzaga C.C.
        • Calhoun D.A.
        Resistant hypertension and hyperaldosteronism.
        Curr Hypertens Rep. 2008; 10: 496-503