Advertisement

Potassium in Hypertension and Cardiovascular Disease

  • Hector Castro
    Affiliations
    Division of Nephrology and Hypertension, University of Miami, Renal and Hypertension Section, Veterans Affairs Medical Center, Miami, FL
    Search for articles by this author
  • Leopoldo Raij
    Correspondence
    Address reprint requests to Leopoldo Raij, MD, Division of Nephrology and Hypertension, University of Miami, Renal and Hypertension Section, Veterans Affairs Medical Center, 1201 NW 16th St, A-1009, Miami, Fl 33125-1624
    Affiliations
    Division of Nephrology and Hypertension, University of Miami, Renal and Hypertension Section, Veterans Affairs Medical Center, Miami, FL
    Search for articles by this author

      Summary

      The increased prevalence of hypertension and cardiovascular disease in industrialized societies undoubtedly is associated with the modern high-sodium/low-potassium diet. Extensive experimental and clinical data strongly link potassium intake to cardiovascular outcome. Most studies suggest that the sodium-to-potassium intake ratio is a better predictor of cardiovascular outcome than either nutrient individually. A high-sodium/low-potassium environment results in significant abnormalities in central hemodynamics, leading to potential target organ damage. Altered renal sodium handling, impaired endothelium-dependent vasodilatation, and increased oxidative stress are important mediators of this effect. It remains of paramount importance to reinforce consumption of a low-sodium/high-potassium diet as a critical strategy for prevention and treatment of hypertension and cardiovascular disease.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Nephrology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Haddy F.J.
        • Vanhoutte P.M.
        • Feletou M.
        Role of potassium in regulating blood flow and blood pressure.
        Am J Physiol Regul Integr Comp Physiol. 2006; 290: R546-R552
        • Houston M.C.
        The importance of potassium in managing hypertension.
        Curr Hypertens Rep. 2011; 13: 309-317
        • Intersalt Cooperative Research Group
        Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion.
        BMJ. 1988; 297: 319-328
        • Khaw K.T.
        • Barrett-Connor E.
        The association between blood pressure, age, and dietary sodium and potassium: a population study.
        Circulation. 1988; 77: 53-61
        • Khaw K.T.
        • Barrett-Connor E.
        Dietary potassium and stroke-associated mortality. A 12-year prospective population study.
        N Engl J Med. 1987; 316: 235-240
        • Ascherio A.
        • Rimm E.B.
        • Hernan M.A.
        • Giovannucci E.L.
        • Kawachi I.
        • Stampfer M.J.
        • et al.
        Intake of potassium, magnesium, calcium, and fiber and risk of stroke among US men.
        Circulation. 1998; 98: 1198-1204
        • Iso H.
        • Stampfer M.J.
        • Manson J.E.
        • Rexrode K.
        • Hennekens C.H.
        • Colditz G.A.
        • et al.
        Prospective study of calcium, potassium, and magnesium intake and risk of stroke in women.
        Stroke. 1999; 30: 1772-1779
        • Gillman M.W.
        • Cupples L.A.
        • Gagnon D.
        • Posner B.M.
        • Ellison R.C.
        • Castelli W.P.
        • et al.
        Protective effect of fruits and vegetables on development of stroke in men.
        JAMA. 1995; 273: 1113-1117
        • Geleijnse J.M.
        • Witteman J.C.
        • Stijnen T.
        • Kloos M.W.
        • Hofman A.
        • Grobbee D.E.
        Sodium and potassium intake and risk of cardiovascular events and all-cause mortality: The Rotterdam Study.
        Eur J Epidemiol. 2007; 22: 763-770
        • Buyck J.F.
        • Blacher J.
        • Kesse-Guyot E.
        • Castetbon K.
        • Galan P.
        • Safar M.
        • et al.
        Differential associations of dietary sodium and potassium intake with blood pressure: a focus on pulse pressure.
        J Hypertens. 2009; 27: 1158-1164
        • Hedayati S.S.
        • Minhajuddin A.T.
        • Ijaz A.
        • Moe O.W.
        • Elsayed E.F.
        • Reilly R.F.
        • et al.
        Association of urinary sodium/potassium ratio with blood pressure: sex and racial differences.
        Clin J Am Soc Nephrol. 2012; 7: 315-322
        • D'Elia L.
        • Barba G.
        • Cappuccio F.P.
        • Strazzullo P.
        Potassium intake, stroke, and cardiovascular disease a meta-analysis of prospective studies.
        J Am Coll Cardiol. 2011; 57: 1210-1219
        • Larsson S.C.
        • Orsini N.
        • Wolk A.
        Dietary potassium intake and risk of stroke: a dose-response meta-analysis of prospective studies.
        Stroke. 2011; 42: 2746-2750
        • Umesawa M.
        • Iso H.
        • Date C.
        • Yamamoto A.
        • Toyoshima H.
        • Watanabe Y.
        • et al.
        Relations between dietary sodium and potassium intakes and mortality from cardiovascular disease: the Japan Collaborative Cohort Study for evaluation of cancer risks.
        Am J Clin Nutr. 2008; 88: 195-202
        • Yang Q.
        • Liu T.
        • Kuklina E.V.
        • Flanders W.D.
        • Hong Y.
        • Gillespie C.
        • et al.
        Sodium and potassium intake and mortality among US adults: prospective data from the Third National Health and Nutrition Examination Survey.
        Arch Intern Med. 2011; 171: 1183-1191
        • Appel L.J.
        • Moore T.J.
        • Obarzanek E.
        • Vollmer W.M.
        • Svetkey L.P.
        • Sacks F.M.
        • et al.
        A clinical trial of the effects of dietary patterns on blood pressure. DASH collaborative research group.
        N Engl J Med. 1997; 336: 1117-1124
        • Whelton P.K.
        • He J.
        • Cutler J.A.
        • Brancati F.L.
        • Appel L.J.
        • Follmann D.
        • et al.
        Effects of oral potassium on blood pressure. Meta-analysis of randomized controlled clinical trials.
        JAMA. 1997; 277: 1624-1632
        • Geleijnse J.M.
        • Kok F.J.
        • Grobbee D.E.
        Blood pressure response to changes in sodium and potassium intake: a metaregression analysis of randomised trials.
        J Hum Hypertens. 2003; 17: 471-480
        • Cook N.R.
        • Obarzanek E.
        • Cutler J.A.
        • Buring J.E.
        • Rexrode K.M.
        • Kumanyika S.K.
        • et al.
        Joint effects of sodium and potassium intake on subsequent cardiovascular disease: the Trials of Hypertension Prevention Follow-Up Study.
        Arch Intern Med. 2009; 169: 32-40
        • Adrogue H.J.
        • Madias N.E.
        Sodium and potassium in the pathogenesis of hypertension.
        N Engl J Med. 2007; 356: 1966-1978
        • Freed S.C.
        • Friedman M.
        Depressor effect of potassium restriction on blood pressure of the rat.
        Proc Soc Exp Biol Med. 1951; 78: 74-77
        • Meneely G.R.
        • Ball C.O.
        • Youmans J.B.
        Chronic sodium chloride toxicity: the protective effect of added potassium chloride.
        Ann Intern Med. 1957; 47: 263-273
        • Meneely G.R.
        • Lemley-Stone J.
        • Darby W.J.
        Changes in blood pressure and body sodium of rats fed sodium and potassium chloride.
        Am J Cardiol. 1961; 8: 527-532
        • Dahl L.K.
        • Leitl G.
        • Heine M.
        Influence of dietary potassium and sodium/potassium molar ratios on the development of salt hypertension.
        J Exp Med. 1972; 136: 318-330
        • Fujita T.
        • Sato Y.
        Natriuretic and antihypertensive effects of potassium in DOCA-salt hypertensive rats.
        Kidney Int. 1983; 24: 731-739
        • Workman M.L.
        • Paller M.S.
        Cardiovascular and endocrine effects of potassium in spontaneously hypertensive rats.
        Am J Physiol. 1985; 249: H907-H913
        • O'Donnell M.J.
        • Yusuf S.
        • Mente A.
        • Gao P.
        • Mann J.F.
        • Teo K.
        • et al.
        Urinary sodium and potassium excretion and risk of cardiovascular events.
        JAMA. 2011; 306: 2229-2238
        • Krishna G.G.
        • Miller E.
        • Kapoor S.
        Increased blood pressure during potassium depletion in normotensive men.
        N Engl J Med. 1989; 320: 1177-1182
        • Krishna G.G.
        • Kapoor S.C
        Potassium depletion exacerbates essential hypertension.
        Ann Intern Med. 1991; 115: 77-83
        • Lawton W.J.
        • Fitz A.E.
        • Anderson E.A.
        • Sinkey C.A.
        • Coleman R.A.
        Effect of dietary potassium on blood pressure, renal function, muscle sympathetic nerve activity, and forearm vascular resistance and flow in normotensive and borderline hypertensive humans.
        Circulation. 1990; 81: 173-184
        • Addison W.L.
        The use of sodium chloride, potassium chloride, sodium bromide, and potassium bromide in cases of arterial hypertension which are amenable to potassium chloride.
        Can Med Assoc J. 1928; 18: 281-285
        • Priddle W.W.
        Observations on the management of hypertension.
        Can Med Assoc J. 1931; 25: 5-8
        • Meneely G.R.
        • Battarbee H.D.
        High sodium-low potassium environment and hypertension.
        Am J Cardiol. 1976; 38: 768-785
        • Chapman C.B.
        • Gibbons T.B.
        The diet and hypertension; a review.
        Medicine (Baltimore). 1950; 29: 29-69
        • Kempner W.
        Some effects of the rice diet treatment of kidney disease and hypertension.
        Bull N Y Acad Med. 1946; 22: 358-370
        • Svetkey L.P.
        • Yarger W.E.
        • Feussner J.R.
        • DeLong E.
        • Klotman P.E.
        Double-blind, placebo-controlled trial of potassium chloride in the treatment of mild hypertension.
        Hypertension. 1987; 9: 444-450
        • Chalmers J.
        • Morgan T.
        • Doyle A.
        • Dickson B.
        • Hopper J.
        • Mathews J.
        • et al.
        Australian national health and medical research council dietary salt study in mild hypertension.
        J Hypertens Suppl. 1986; 4: S629-S637
        • Svetkey L.P.
        • Simons-Morton D.
        • Vollmer W.M.
        • Appel L.J.
        • Conlin P.R.
        • Ryan D.H.
        • et al.
        Effects of dietary patterns on blood pressure: subgroup analysis of the dietary approaches to stop hypertension (DASH) randomized clinical trial.
        Arch Intern Med. 1999; 159: 285-293
        • Cappuccio F.P.
        • MacGregor G.A.
        Does potassium supplementation lower blood pressure? A meta-analysis of published trials.
        J Hypertens. 1991; 9: 465-473
        • He F.J.
        • Marciniak M.
        • Carney C.
        • Markandu N.D.
        • Anand V.
        • Fraser W.D.
        • et al.
        Effects of potassium chloride and potassium bicarbonate on endothelial function, cardiovascular risk factors, and bone turnover in mild hypertensives.
        Hypertension. 2010; 55: 681-688
        • Krishna G.G.
        • Chusid P.
        • Hoeldtke R.D.
        Mild potassium depletion provokes renal sodium retention.
        J Lab Clin Med. 1987; 109: 724-730
        • Krishna G.G.
        • Miller E.
        • Kapoor S.
        Increased blood pressure during potassium depletion in normotensive men.
        N Engl J Med. 1989; 320: 1177-1182
        • Huang C.L.
        • Kuo E.
        • Toto R.D.
        WNK kinases and essential hypertension.
        Curr Opin Nephrol Hypertens. 2008; 17: 133-137
        • Hoorn E.J.
        • Nelson J.H.
        • McCormick J.A.
        • Ellison D.H.
        The WNK kinase network regulating sodium, potassium, and blood pressure.
        J Am Soc Nephrol. 2011; 22: 605-614
        • Cai H.
        • Cebotaru V.
        • Wang Y.H.
        • Zhang X.M.
        • Cebotaru L.
        • Guggino S.E.
        • et al.
        WNK4 kinase regulates surface expression of the human sodium chloride cotransporter in mammalian cells.
        Kidney Int. 2006; 69: 2162-2170
        • Lai L.
        • Feng X.
        • Liu D.
        • Chen J.
        • Zhang Y.
        • Niu B.
        • et al.
        Dietary salt modulates the sodium chloride cotransporter expression likely through an aldosterone-mediated WNK4-ERK1/2 signaling pathway.
        Pflugers Arch. 2012; 463: 477-485
        • Naray-Fejes-Toth A.
        • Snyder P.M.
        • Fejes-Toth G.
        The kidney-specific WNK1 isoform is induced by aldosterone and stimulates epithelial sodium channel-mediated Na+ transport.
        Proc Natl Acad Sci U S A. 2004; 101: 17434-17439
        • Liu Z.
        • Wang H.R.
        • Huang C.L.
        Regulation of ROMK channel and K+ homeostasis by kidney-specific WNK1 kinase.
        J Biol Chem. 2009; 284: 12198-12206
        • Lazrak A.
        • Liu Z.
        • Huang C.L.
        Antagonistic regulation of ROMK by long and kidney-specific WNK1 isoforms.
        Proc Natl Acad Sci U S A. 2006; 103: 1615-1620
        • Soleimani M.
        • Bergman J.A.
        • Hosford M.A.
        • McKinney T.D.
        Potassium depletion increases luminal Na+/H+ exchange and basolateral Na+:CO3=:HCO3- cotransport in rat renal cortex.
        J Clin Invest. 1990; 86: 1076-1083
        • Hayashi M.
        • Katz A.I.
        The kidney in potassium depletion. I. Na+-K+-ATPase activity and [3H]ouabain binding in MCT.
        Am J Physiol. 1987; 252: F437-F446
        • Imbert-Teboul M.
        • Doucet A.
        • Marsy S.
        • Siaume-Perez S.
        Alterations of enzymatic activities along rat collecting tubule in potassium depletion.
        Am J Physiol. 1987; 253: F408-F417
        • Krishna G.G.
        • Kapoor S.C.
        Potassium depletion exacerbates essential hypertension.
        Ann Intern Med. 1991; 115: 77-83
        • Hamlyn J.M.
        • Blaustein M.P.
        Sodium chloride, extracellular fluid volume, and blood pressure regulation.
        Am J Physiol. 1986; 251: F563-F575
        • Ibsen H.
        • Leth A.
        Plasma volume and extracellular fluid volume in essential hypertension.
        Acta Med Scand. 1973; 1-2: 93-96
        • Emanuel D.A.
        • Scott J.B.
        • Haddy F.J.
        Effect of potassium on small and large blood vessels of the dog forelimb.
        Am J Physiol. 1959; 197: 637-642
        • Scott J.
        • Emanuel D.
        • Haddy F.
        Effect of potassium on renal vascular resistance and urine flow rate.
        Am J Physiol. 1959; 197: 305-308
        • Chen W.T.
        • Brace R.A.
        • Scott J.B.
        • Anderson D.K.
        • Haddy F.J.
        The mechanism of the vasodilator action of potassium.
        Proc Soc Exp Biol Med. 1972; 140: 820-824
        • Raij L.
        • Luscher T.F.
        • Vanhoutte P.M.
        High potassium diet augments endothelium-dependent relaxations in the Dahl rat.
        Hypertension. 1988; 12: 562-567
        • Zhou M.S.
        • Kosaka H.
        • Yoneyama H.
        Potassium augments vascular relaxation mediated by nitric oxide in the carotid arteries of hypertensive Dahl rats.
        Am J Hypertens. 2000; 13: 666-672
        • Taddei S.
        • Mattei P.
        • Virdis A.
        • Sudano I.
        • Ghiadoni L.
        • Salvetti A.
        Forearm vasodilation in response to acetylcholine is increased by potassium in essential hypertensive patients.
        J Hypertens Suppl. 1993; 11: S144-S145
        • Hayakawa H.
        • Raij L.
        The link among nitric oxide synthase activity, endothelial function, and aortic and ventricular hypertrophy in hypertension.
        Hypertension. 1997; 29: 235-241
        • Pesen D.
        • Hoh J.H.
        Micromechanical architecture of the endothelial cell cortex.
        Biophys J. 2005; 88: 670-679
        • Davies P.F.
        • Zilberberg J.
        • Helmke B.P.
        Spatial microstimuli in endothelial mechanosignaling.
        Circ Res. 2003; 92: 359-370
        • Pesen D.
        • Hoh J.H.
        Modes of remodeling in the cortical cytoskeleton of vascular endothelial cells.
        FEBS Lett. 2005; 579: 473-476
        • Kasas S.
        • Wang X.
        • Hirling H.
        • Marsault R.
        • Huni B.
        • Yersin A.
        • et al.
        Superficial and deep changes of cellular mechanical properties following cytoskeleton disassembly.
        Cell Motil Cytoskeleton. 2005; 62: 124-132
        • Su Y.
        • Edwards-Bennett S.
        • Bubb M.R.
        • Block E.R.
        Regulation of endothelial nitric oxide synthase by the actin cytoskeleton.
        Am J Physiol Cell Physiol. 2003; 284: C1542-C1549
        • Su Y.
        • Kondrikov D.
        • Block E.R.
        Cytoskeletal regulation of nitric oxide synthase.
        Cell Biochem Biophys. 2005; 43: 439-449
        • Kondrikov D.
        • Han H.R.
        • Block E.R.
        • Su Y.
        Growth and density-dependent regulation of NO synthase by the actin cytoskeleton in pulmonary artery endothelial cells.
        Am J Physiol Lung Cell Mol Physiol. 2006; 290: L41-L50
        • Searles C.D.
        • Ide L.
        • Davis M.E.
        • Cai H.
        • Weber M.
        Actin cytoskeleton organization and posttranscriptional regulation of endothelial nitric oxide synthase during cell growth.
        Circ Res. 2004; 95: 488-495
        • Oberleithner H.
        • Callies C.
        • Kusche-Vihrog K.
        • Schillers H.
        • Shahin V.
        • Riethmuller C.
        • et al.
        Potassium softens vascular endothelium and increases nitric oxide release.
        Proc Natl Acad Sci U S A. 2009; 106: 2829-2834
        • Oberleithner H.
        • Riethmuller C.
        • Schillers H.
        • MacGregor G.A.
        • de Wardener H.E.
        • Hausberg M.
        Plasma sodium stiffens vascular endothelium and reduces nitric oxide release.
        Proc Natl Acad Sci U S A. 2007; 104: 16281-16286
        • Kusche-Vihrog K.
        • Callies C.
        • Fels J.
        • Oberleithner H.
        The epithelial sodium channel (ENaC): mediator of the aldosterone response in the vascular endothelium?.
        Steroids. 2010; 75: 544-549
        • Perez F.R.
        • Venegas F.
        • Gonzalez M.
        • Andres S.
        • Vallejos C.
        • Riquelme G.
        • et al.
        Endothelial epithelial sodium channel inhibition activates endothelial nitric oxide synthase via phosphoinositide 3-kinase/Akt in small-diameter mesenteric arteries.
        Hypertension. 2009; 53: 1000-1007
        • Feletou M.
        • Vanhoutte P.M.
        Endothelium-dependent hyperpolarizations: past beliefs and present facts.
        Ann Med. 2007; 39: 495-516
        • Edwards G.
        • Feletou M.
        • Weston A.H.
        Endothelium-derived hyperpolarising factors and associated pathways: a synopsis.
        Pflugers Arch. 2010; 459: 863-879
        • Sheng J.Z.
        • Braun A.P.
        Small- and intermediate-conductance Ca2+-activated K+ channels directly control agonist-evoked nitric oxide synthesis in human vascular endothelial cells.
        Am J Physiol Cell Physiol. 2007; 293: C458-C467
        • Stankevicius E.
        • Dalsgaard T.
        • Kroigaard C.
        • Beck L.
        • Boedtkjer E.
        • Misfeldt M.W.
        • et al.
        Opening of small and intermediate calcium-activated potassium channels induces relaxation mainly mediated by nitric-oxide release in large arteries and endothelium-derived hyperpolarizing factor in small arteries from rat.
        J Pharmacol Exp Ther. 2011; 339: 842-850
        • Fujii K.
        • Tominaga M.
        • Ohmori S.
        • Kobayashi K.
        • Koga T.
        • Takata Y.
        • et al.
        Decreased endothelium-dependent hyperpolarization to acetylcholine in smooth muscle of the mesenteric artery of spontaneously hypertensive rats.
        Circ Res. 1992; 70: 660-669
        • Bussemaker E.
        • Popp R.
        • Fisslthaler B.
        • Larson C.M.
        • Fleming I.
        • Busse R.
        • et al.
        Aged spontaneously hypertensive rats exhibit a selective loss of EDHF-mediated relaxation in the renal artery.
        Hypertension. 2003; 42: 562-568
        • Lee R.M.
        Changes in endothelium-derived hyperpolarizing factor and myogenic response in rats with chronic renal failure and their association with hypertension.
        J Hypertens. 2006; 24: 2153-2155
        • Edwards G.
        • Dora K.A.
        • Gardener M.J.
        • Garland C.J.
        • Weston A.H.
        K+ is an endothelium-derived hyperpolarizing factor in rat arteries.
        Nature. 1998; 396: 269-272
        • Dawes M.
        • Sieniawska C.
        • Delves T.
        • Dwivedi R.
        • Chowienczyk P.J.
        • Ritter J.M.
        Barium reduces resting blood flow and inhibits potassium-induced vasodilation in the human forearm.
        Circulation. 2002; 105: 1323-1328
        • Dwivedi R.
        • Saha S.
        • Chowienczyk P.J.
        • Ritter J.M.
        Block of inward rectifying K+ channels (KIR) inhibits bradykinin-induced vasodilatation in human forearm resistance vasculature.
        Arterioscler Thromb Vasc Biol. 2005; 25: e7-e9
        • Shimokawa H.
        • Matoba T.
        Hydrogen peroxide as an endothelium-derived hyperpolarizing factor.
        Pharmacol Res. 2004; 49: 543-549
        • Edwards D.H.
        • Li Y.
        • Griffith T.M.
        Hydrogen peroxide potentiates the EDHF phenomenon by promoting endothelial Ca2+ mobilization.
        Arterioscler Thromb Vasc Biol. 2008; 28: 1774-1781
        • Mustafa A.K.
        • Sikka G.
        • Gazi S.K.
        • Steppan J.
        • Jung S.M.
        • Bhunia A.K.
        • et al.
        Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels.
        Circ Res. 2011; 109: 1259-1268
        • Olson K.R.
        The therapeutic potential of hydrogen sulfide: separating hype from hope.
        Am J Physiol Regul Integr Comp Physiol. 2011; 301: R297-R312
        • Skovgaard N.
        • Gouliaev A.
        • Aalling M.
        • Simonsen U.
        The role of endogenous H2S in cardiovascular physiology.
        Curr Pharm Biotechnol. 2011; 12: 1385-1393
        • Zhou M.S.
        • Hernandez Schulman I.
        • Pagano P.J.
        • Jaimes E.A.
        • Raij L.
        Reduced NAD(P)H oxidase in low renin hypertension: link among angiotensin II, atherogenesis, and blood pressure.
        Hypertension. 2006; 47: 81-86
        • MacCarthy P.A.
        • Shah A.M.
        Impaired endothelium-dependent regulation of ventricular relaxation in pressure-overload cardiac hypertrophy.
        Circulation. 2000; 101: 1854-1860
        • MacCarthy P.A.
        • Grieve D.J.
        • Li J.M.
        • Dunster C.
        • Kelly F.J.
        • Shah A.M.
        Impaired endothelial regulation of ventricular relaxation in cardiac hypertrophy: role of reactive oxygen species and NADPH oxidase.
        Circulation. 2001; 104: 2967-2974
        • McCabe R.D.
        • Bakarich M.A.
        • Srivastava K.
        • Young D.B.
        Potassium inhibits free radical formation.
        Hypertension. 1994; 24: 77-82
        • Matsui H.
        • Shimosawa T.
        • Uetake Y.
        • Wang H.
        • Ogura S.
        • Kaneko T.
        • et al.
        Protective effect of potassium against the hypertensive cardiac dysfunction: association with reactive oxygen species reduction.
        Hypertension. 2006; 48: 225-231
        • Kido M.
        • Ando K.
        • Onozato M.L.
        • Tojo A.
        • Yoshikawa M.
        • Ogita T.
        • et al.
        Protective effect of dietary potassium against vascular injury in salt-sensitive hypertension.
        Hypertension. 2008; 51: 225-231
        • Schulman I.H.
        • Zhou M.S.
        • Raij L.
        Interaction between nitric oxide and angiotensin II in the endothelium: role in atherosclerosis and hypertension.
        J Hypertens Suppl. 2006; 24: S45-S50
        • Raij L.
        Nitric oxide, salt sensitivity, and cardiorenal injury in hypertension.
        Semin Nephrol. 1999; 19: 296-303
        • Rajamaki K.
        • Lappalainen J.
        • Oorni K.
        • Valimaki E.
        • Matikainen S.
        • Kovanen P.T.
        • et al.
        Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation.
        PLoS One. 2010; 5: e11765
        • Petrilli V.
        • Papin S.
        • Dostert C.
        • Mayor A.
        • Martinon F.
        • Tschopp J.
        Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration.
        Cell Death Differ. 2007; 14: 1583-1589
        • Arlehamn C.S.
        • Petrilli V.
        • Gross O.
        • Tschopp J.
        • Evans T.J.
        The role of potassium in inflammasome activation by bacteria.
        J Biol Chem. 2010; 285: 10508-10518
        • Stow L.R.
        • Gumz M.L.
        • Lynch I.J.
        • Greenlee M.M.
        • Rudin A.
        • Cain B.D.
        • et al.
        Aldosterone modulates steroid receptor binding to the endothelin-1 gene (edn1).
        J Biol Chem. 2009; 284: 30087-30096
        • Funder J.W.
        Aldosterone and mineralocorticoid receptors in the cardiovascular system.
        Prog Cardiovasc Dis. 2010; 52: 393-400
        • Shibata S.
        • Fujita T.
        The kidneys and aldosterone/mineralocorticoid receptor system in salt-sensitive hypertension.
        Curr Hypertens Rep. 2011; 13: 109-115
        • Shibata S.
        • Nagase M.
        • Yoshida S.
        • Kawarazaki W.
        • Kurihara H.
        • Tanaka H.
        • et al.
        Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease.
        Nat Med. 2008; 14: 1370-1376
        • Nagata D.
        • Takahashi M.
        • Sawai K.
        • Tagami T.
        • Usui T.
        • Shimatsu A.
        • et al.
        Molecular mechanism of the inhibitory effect of aldosterone on endothelial NO synthase activity.
        Hypertension. 2006; 48: 165-171
        • Maron B.A.
        • Zhang Y.Y.
        • Handy D.E.
        • Beuve A.
        • Tang S.S.
        • Loscalzo J.
        • et al.
        Aldosterone increases oxidant stress to impair guanylyl cyclase activity by cysteinyl thiol oxidation in vascular smooth muscle cells.
        J Biol Chem. 2009; 284: 7665-7672
        • Wong S.
        • Brennan F.E.
        • Young M.J.
        • Fuller P.J.
        • Cole T.J.
        A direct effect of aldosterone on endothelin-1 gene expression in vivo.
        Endocrinology. 2007; 148: 1511-1517
        • Blacher J.
        • Amah G.
        • Girerd X.
        • Kheder A.
        • Ben Mais H.
        • London G.M.
        • et al.
        Association between increased plasma levels of aldosterone and decreased systemic arterial compliance in subjects with essential hypertension.
        Am J Hypertens. 1997; 10: 1326-1334
        • Lacolley P.
        • Labat C.
        • Pujol A.
        • Delcayre C.
        • Benetos A.
        • Safar M.
        Increased carotid wall elastic modulus and fibronectin in aldosterone-salt-treated rats: effects of eplerenone.
        Circulation. 2002; 106: 2848-2853
        • Slaton P.E.
        • Biglieri E.G.
        Hypertension and hyperaldosteronism of renal and adrenal origin.
        Am J Med. 1965; 38: 324-336
        • Biglieri E.G.
        • McIlroy M.B.
        Abnormalities of renal function and circulatory reflexes in primary aldosteronism.
        Circulation. 1966; 33: 78-86
        • Meneely G.R.
        • Ball C.O.
        Experimental epidemiology of chronic sodium chloride toxicity and the protective effect of potassium chloride.
        Am J Med. 1958; 25: 713-725
        • Jones J.W.
        • Sebastian A.
        • Hulter H.N.
        • Schambelan M.
        • Sutton J.M.
        • Biglieri E.G.
        Systemic and renal acid-base effects of chronic dietary potassium depletion in humans.
        Kidney Int. 1982; 21: 402-410
        • Suga S.I.
        • Phillips M.I.
        • Ray P.E.
        • Raleigh J.A.
        • Vio C.P.
        • Kim Y.G.
        • et al.
        Hypokalemia induces renal injury and alterations in vasoactive mediators that favor salt sensitivity.
        Am J Physiol Renal Physiol. 2001; 281: F620-F629
        • Suga S.
        • Mazzali M.
        • Ray P.E.
        • Kang D.H.
        • Johnson R.J.
        Angiotensin II type 1 receptor blockade ameliorates tubulointerstitial injury induced by chronic potassium deficiency.
        Kidney Int. 2002; 61: 951-958
        • Suga S.
        • Yasui N.
        • Yoshihara F.
        • Horio T.
        • Kawano Y.
        • Kangawa K.
        • et al.
        Endothelin a receptor blockade and endothelin B receptor blockade improve hypokalemic nephropathy by different mechanisms.
        J Am Soc Nephrol. 2003; 14: 397-406
        • Fujita T.
        • Sato Y.
        Changes in renal and central noradrenergic activity with potassium in DOCA-salt rats.
        Am J Physiol. 1984; 246: F670-F675
        • Vanhoutte P.M.
        • Verbeuren T.J.
        • Webb R.C.
        Local modulation of adrenergic neuroeffector interaction in the blood vessel well.
        Physiol Rev. 1981; 61: 151-247
        • Verhaeghe R.H.
        • Lorenze R.R.
        • McGrath M.A.
        • Shepherd J.T.
        • Vanhoutte P.M.
        Metabolic modulation of neurotransmitter release–adenosine, adenine nucleotides, potassium, hyperosmolarity, and hydrogen ion.
        Fed Proc. 1978; 37: 208-211
        • Raij L.
        • Gonzalez-Ochoa A.M.
        Vascular compliance in blood pressure.
        Curr Opin Nephrol Hypertens. 2011; 20: 457-464
        • Chirinos J.A.
        Arterial stiffness: basic concepts and measurement techniques.
        J Cardiovasc Transl Res. 2012; 5: 243-255
        • Safar M.E.
        • Boudier H.S.
        Vascular development, pulse pressure, and the mechanisms of hypertension.
        Hypertension. 2005; 46: 205-209
        • Roman M.J.
        • Devereux R.B.
        • Kizer J.R.
        • Lee E.T.
        • Galloway J.M.
        • Ali T.
        • et al.
        Central pressure more strongly relates to vascular disease and outcome than does brachial pressure: The Strong Heart Study.
        Hypertension. 2007; 50: 197-203
        • Redelinghuys M.
        • Norton G.R.
        • Scott L.
        • Maseko M.J.
        • Brooksbank R.
        • Majane O.H.
        • et al.
        Relationship between urinary salt excretion and pulse pressure and central aortic hemodynamics independent of steady state pressure in the general population.
        Hypertension. 2010; 56: 584-590
        • Oberleithner H.
        • Kusche-Vihrog K.
        • Schillers H.
        Endothelial cells as vascular salt sensors.
        Kidney Int. 2010; 77: 490-494
        • Chirinos J.A.
        • Townsend R.
        Sodium, potassium, and target organ damage: a case for central hemodynamics.
        Hypertension. 2010; 56: 578-580