Advertisement

Role of Sodium Restriction and Diuretic Therapy for “Resistant” Hypertension in Chronic Kidney Disease

      Summary

      In patients with chronic kidney disease, an impaired capacity of the kidney to excrete sodium is a major contributor to hypertension. We discuss the role of sodium restriction and diuretic therapy for resistant hypertension in chronic kidney disease. Independent of increasing blood pressure, a sustained high sodium intake also may affect the progression of renal disease adversely. Consequently, dietary sodium restriction and appropriate diuretic therapy are the foundation for the treatment of resistant hypertension. Thiazide-like diuretics have decreasing effectiveness in patients with advancing renal disease; however, they may augment the effectiveness of the more potent loop diuretics. Increasing evidence suggests that spironolactone is an effective adjunct for the treatment of resistant hypertension. Inclusion of other classes of antihypertensive agents to the treatment regimen generally is necessary to counterbalance other mechanisms contributing to resistant hypertension. The effectiveness of these agents is enhanced by dietary sodium restriction and diuretic therapy.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Nephrology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Borst J.G.
        • Borst-De Geus A.
        Hypertension explained by Starling׳s theory of circulatory homoeostasis.
        Lancet. 1963; 1: 677-682
        • Bricker N.S.
        • Fine L.G.
        • Kaplan M.
        • Epstein M.
        • Bourgoignie J.J.
        • Light A.
        "Magnification phenomenon" in chronic renal disease.
        N Engl J Med. 1978; 299: 1287-1293
        • Kusaba T.
        • Mori Y.
        • Masami O.
        • Hiroko N.
        • Adachi T.
        • Sugishita C.
        • et al.
        Sodium restriction improves the gustatory threshold for salty taste in patients with chronic kidney disease.
        Kidney Int. 2009; 76: 638-643
        • Slagman M.C.
        • Waanders F.
        • Hemmelder M.H.
        • Woittiez A.J.
        • Janssen W.M.
        • Lambers Heerspink H.J.
        • et al.
        HOlland NEphrology STudy Group. Moderate dietary sodium restriction added to angiotensin converting enzyme inhibition compared with dual blockade in lowering proteinuria and blood pressure: randomised controlled trial.
        BMJ. 2011; 343: d4366
        • Pimenta E.
        • Gaddam K.K.
        • Oparil S.
        • Aban I.
        • Husain S.
        • Dell׳Italia L.J.
        • et al.
        Effects of dietary sodium reduction on blood pressure in subjects with resistant hypertension: results from a randomized trial.
        Hypertension. 2009; 54: 475-481
        • Koomans H.A.
        • Roos J.C.
        • Boer P.
        • Geyskes G.G.
        • Mees E.J.
        Salt sensitivity of blood pressure in chronic renal failure. Evidence for renal control of body fluid distribution in man.
        Hypertension. 1982; 4: 190-197
        • Blythe W.B.
        Natural history of hypertension in renal parenchymal disease.
        Am J Kidney Dis. 1985; 5: A50-A56
        • Johnson R.J.
        • Herrera-Acosta J.
        • Schreiner G.F.
        • Rodriguez-Iturbe B.
        Subtle acquired renal injury as a mechanism of salt-sensitive hypertension.
        N Engl J Med. 2002; 346: 913-923
        • De Nicola L.
        • Minutolo R.
        • Bellizzi V.
        • Zoccali C.
        • Cianciaruso B.
        • Andreucci V.E.
        • et al.
        investigators of the TArget Blood Pressure LEvels in Chronic Kidney Disease (TABLE in CKD) Study Group. Achievement of target blood pressure levels in chronic kidney disease: a salty question?.
        Am J Kidney Dis. 2004; 43: 782-795
        • Weir M.R.
        • Dengel D.R.
        • Behrens M.T.
        • Goldberg A.P.
        Salt-induced increases in systolic blood pressure affect renal hemodynamics and proteinuria.
        Hypertension. 1995; 25: 1339-1344
        • Krikken J.A.
        • Laverman G.D.
        • Navis G.
        Benefits of dietary sodium restriction in the management of chronic kidney disease.
        Curr Opin Nephrol Hypertens. 2009; 18: 531-538
        • Krikken J.A.
        • Lely A.T.
        • Bakker S.J.
        • Navis G.
        The effect of a shift in sodium intake on renal hemodynamics is determined by body mass index in healthy young men.
        Kidney Int. 2007; 71: 260-265
        • Kotchen T.A.
        • Cowley Jr, A.W.
        • Frohlich E.D.
        Salt in health and disease--a delicate balance.
        N Engl J Med. 2013; 368: 1229-1237
        • Dworkin L.D.
        • Benstein J.A.
        • Tolbert E.
        • Feiner H.D.
        Salt restriction inhibits renal growth and stabilizes injury in rats with established renal disease.
        J Am Soc Nephrol. 1996; 7: 437-442
        • Oudot C.
        • Lajoix A.D.
        • Jover B.
        • Rugale C.
        Dietary sodium restriction prevents kidney damage in high fructose-fed rats.
        Kidney Int. 2013; 83: 674-683
        • De Nicola L.
        • Minutolo R.
        • Gallo C.
        • Zoccali C.
        • Cianciaruso B.
        • Conte M.
        • et al.
        Management of hypertension in chronic kidney disease: the Italian multicentric study.
        J Nephrol. 2005; 18: 397-404
        • McMahon E.J.
        • Campbell K.L.
        • Mudge D.W.
        • Bauer J.D.
        Achieving salt restriction in chronic kidney disease.
        Int J Nephrol. 2012; 2012: 720429
        • Agarwal R.
        Resistant hypertension and the neglected antihypertensive: sodium restriction.
        Nephrol Dial Transplant. 2012; 27: 4041-4045
        • Kotchen T.A.
        • Kotchen J.M.
        • Boegehold M.A.
        Nutrition and hypertension prevention.
        Hypertension. 1991; 18: I115-120
      1. Institute of Medicine of the National Academies. Sodium intake in populations: assessment of evidence. May 14, 2013.

      2. K/DOQI Clinical Practice Guidelines on Hypertension and Antihypertensive Agents in Chronic Kidney Disease. Available at: http://www.kidney.org/professionals/kdoqi/guidelines_bp/guide_12.htm. Accessed september 16, 2014

        • Buerkert J.
        • Martin D.
        • Prasad J.
        • Chambless S.
        • Klahr S.
        Response of deep nephrons and the terminal collecting duct to a reduction in renal mass.
        Am J Physiol. 1979; 236: F454-F464
        • Ernst M.E.
        • Moser M.
        Use of diuretics in patients with hypertension.
        N Engl J Med. 2009; 361: 2153-2164
        • Eladari D.
        • Chambrey R.
        Identification of a novel target of thiazide diuretics.
        J Nephrol. 2011; 24: 391-394
        • Pickkers P.
        • Hughes A.D.
        • Russel F.G.
        • Thien T.
        • Smits P.
        Thiazide-induced vasodilation in humans is mediated by potassium channel activation.
        Hypertension. 1998; 32: 1071-1076
        • Duarte J.D.
        • Cooper-DeHoff R.M.
        Mechanisms for blood pressure lowering and metabolic effects of thiazide and thiazide-like diuretics.
        Expert Rev Cardiovasc Ther. 2010; 8: 793-802
        • Aleksandrow D.
        • Wysznacka W.
        • Gajewski J.
        Influence of chlorothiazide upon arterial responsiveness to nor-epinephrine in hypertensive subjects.
        N Engl J Med. 1959; 261: 1052-1055
        • Freis E.D.
        • Wanko A.
        • Schnaper H.W.
        • Frohlich E.D.
        Mechanism of the altered blood pressure responsiveness produced by chlorothiazide.
        J Clin Invest. 1960; 39: 1277-1281
        • Zhu Z.
        • Zhu S.
        • Liu D.
        • Cao T.
        • Wang L.
        • Tepel M.
        Thiazide-like diuretics attenuate agonist-induced vasoconstriction by calcium desensitization linked to Rho kinase.
        Hypertension. 2005; 45: 233-239
        • Colas B.
        • Slama M.
        • Collin T.
        • Safar M.
        • Andrejak M.
        Mechanisms of methyclothiazide-induced inhibition of contractile responses in rat aorta.
        Eur J Pharmacol. 2000; 408: 63-67
        • Knauf H.
        • Mutschler E.
        Diuretic effectiveness of hydrochlorothiazide and furosemide alone and in combination in chronic renal failure.
        J Cardiovasc Pharmacol. 1995; 26: 394-400
        • Dussol B.
        • Moussi-Frances J.
        • Morange S.
        • Somma-Delpero C.
        • Mundler O.
        • Berland Y.
        A pilot study comparing furosemide and hydrochlorothiazide in patients with hypertension and stage 4 or 5 chronic kidney disease.
        J Clin Hypertens (Greenwich). 2012; 14: 32-37
        • Roush G.C.
        • Holford T.R.
        • Guddati A.K.
        Chlorthalidone compared with hydrochlorothiazide in reducing cardiovascular events: systematic review and network meta-analyses.
        Hypertension. 2012; 59: 1110-1117
        • Agarwal R.
        • Sinha A.D.
        Thiazide diuretics in advanced chronic kidney disease.
        J Am Soc Hypertens. 2012; 6: 299-308
        • Moser M.
        Why are physicians not prescribing diuretics more frequently in the management of hypertension?.
        JAMA. 1998; 279: 1813-1816
        • Gaddam K.K.
        • Nishizaka M.K.
        • Pratt-Ubunama M.N.
        • Pimenta E.
        • Aban I.
        • Oparil S.
        • et al.
        Characterization of resistant hypertension: association between resistant hypertension, aldosterone, and persistent intravascular volume expansion.
        Arch Intern Med. 2008; 168: 1159-1164
        • Pitt B.
        "Escape" of aldosterone production in patients with left ventricular dysfunction treated with an angiotensin converting enzyme inhibitor: implications for therapy.
        Cardiovasc Drugs Ther. 1995; 9: 145-149
        • McKelvie R.S.
        • Yusuf S.
        • Pericak D.
        • Avezum A.
        • Burns R.J.
        • Probstfield J.
        • et al.
        Comparison of candesartan, enalapril, and their combination in congestive heart failure: randomized evaluation of strategies for left ventricular dysfunction (RESOLVD) pilot study. The RESOLVD Pilot Study Investigators.
        Circulation. 1999; 100: 1056-1064
        • Cicoira M.
        • Zanolla L.
        • Rossi A.
        • Golia G.
        • Franceschini L.
        • Cabrini G.
        • et al.
        Failure of aldosterone suppression despite angiotensin-converting enzyme (ACE) inhibitor administration in chronic heart failure is associated with ACE DD genotype.
        J Am Coll Cardiol. 2001; 37: 1808-1812
        • Jain G.
        • Campbell R.C.
        • Warnock D.G.
        Mineralocorticoid receptor blockers and chronic kidney disease.
        Clin J Am Soc Nephrol. 2009; 4: 1685-1691
        • Bomback A.S.
        • Klemmer P.J.
        The incidence and implications of aldosterone breakthrough.
        Nat Clin Pract Nephrol. 2007; 3: 486-492
        • Pitt B.
        • Zannad F.
        • Remme W.J.
        • Cody R.
        • Castaigne A.
        • Perez A.
        • et al.
        The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators.
        N Engl J Med. 1999; 341: 709-717
        • Sato A.
        • Saruta T.
        Aldosterone breakthrough during angiotensin-converting enzyme inhibitor therapy.
        Am J Hypertens. 2003; 16: 781-788
        • Athyros V.G.
        • Mikhailidis D.P.
        • Kakafika A.I.
        • Tziomalos K.
        • Karagiannis A.
        Angiotensin II reactivation and aldosterone escape phenomena in renin-angiotensin-aldosterone system blockade: is oral renin inhibition the solution?.
        Expert Opin Pharmacother. 2007; 8: 529-535
        • Pimenta E.
        • Calhoun D.A.
        Resistant hypertension and aldosteronism.
        Curr Hypertens Rep. 2007; 9: 353-359
        • Nishizaka M.K.
        • Zaman M.A.
        • Calhoun D.A.
        Efficacy of low-dose spironolactone in subjects with resistant hypertension.
        Am J Hypertens. 2003; 16: 925-930
        • Václavík J.
        • Sedlák R.
        • Plachy M.
        • Navrátil K.
        • Plásek J.
        • Jarkovsky J.
        • et al.
        Addition of spironolactone in patients with resistant arterial hypertension (ASPIRANT): a randomized, double-blind, placebo-controlled trial.
        Hypertension. 2011; 57: 1069-1075
        • Bomback A.S.
        • Kshirsagar A.V.
        • Amamoo M.A.
        • Klemmer P.J.
        Change in proteinuria after adding aldosterone blockers to ACE inhibitors or angiotensin receptor blockers in CKD: a systematic review.
        Am J Kidney Dis. 2008; 51: 199-211
        • Navaneethan S.D.
        • Nigwekar S.U.
        • Sehgal A.R.
        • Strippoli G.F.
        Aldosterone antagonists for preventing the progression of chronic kidney disease.
        Cochrane Database Syst Rev. 2009; 3: CD007004
        • Guo C.
        • Martinez-Vasquez D.
        • Mendez G.P.
        • Toniolo M.F.
        • Yao T.M.
        • Oestreicher E.M.
        • et al.
        Mineralocorticoid receptor antagonist reduces renal injury in rodent models of types 1 and 2 diabetes mellitus.
        Endocrinology. 2006; 147: 5363-5373
        • Han S.Y.
        • Kim C.H.
        • Kim H.S.
        • Jee Y.H.
        • Song H.K.
        • Lee M.H.
        • et al.
        Spironolactone prevents diabetic nephropathy through an anti-inflammatory mechanism in type 2 diabetic rats.
        J Am Soc Nephrol. 2006; 17: 1362-1372
        • Lee S.H.
        • Yoo T.H.
        • Nam B.Y.
        • Kim D.K.
        • Li J.J.
        • Jung D.S.
        • et al.
        Activation of local aldosterone system within podocytes is involved in apoptosis under diabetic conditions.
        Am J Physiol Renal Physiol. 2009; 297: F1381-F1390
        • Toyonaga J.
        • Tsuruya K.
        • Ikeda H.
        • Noguchi H.
        • Yotsueda H.
        • Fujisaki K.
        • et al.
        Spironolactone inhibits hyperglycemia-induced podocyte injury by attenuating ROS production.
        Nephrol Dial Transplant. 2011; 26: 2475-2484
        • Fujisawa G.
        • Okada K.
        • Muto S.
        • Fujita N.
        • Itabashi N.
        • Kusano E.
        • et al.
        Spironolactone prevents early renal injury in streptozotocin-induced diabetic rats.
        Kidney Int. 2004; 66: 1493-1502
        • Yuan J.
        • Jia R.
        • Bao Y.
        Beneficial effects of spironolactone on glomerular injury in streptozotocin-induced diabetic rats.
        J Renin Angiotensin Aldosterone Syst. 2007; 8: 118-126
        • Palmer B.F.
        Managing hyperkalemia caused by inhibitors of the renin-angiotensin-aldosterone system.
        N Engl J Med. 2004; 351: 585-592