Advertisement

Pathophysiology of Resistant Hypertension in Chronic Kidney Disease

  • Vito M. Campese
    Correspondence
    Address reprint requests to Vito M. Campese, MD, Physiology and Biophysics, Division of Nephrology and Hypertension Center, Keck School of Medicine at University of Southern California, 2020 Zonal Ave, Los Angeles, CA 90033
    Affiliations
    Division of Nephrology, Keck School of Medicine, University of Southern California, Los Angeles, CA
    Search for articles by this author

      Summary

      Hypertension associated with chronic kidney diseases often is resistant to drug treatment. This review deals with two main aspects of the management of CKD patients with hypertension: the role of sodium/volume and the need for dietary salt restriction, as well as appropriate use of diuretics and what currently is called sequential nephron blockade; the second aspect that is addressed extensively in this review is the role of the sympathetic nervous system and the possible clinical use of renal denervation.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Nephrology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Pimenta E.
        • Krishna K.
        • Gaddam K.K.
        • Oparil S.
        • Aban I.
        • Husain S.
        • et al.
        Effects of dietary sodium reduction on blood pressure in subjects with resistant hypertension.
        Hypertension. 2009; 54: 475-481
        • Ernst M.E.
        • Carter B.L.
        • Goerdt C.J.
        • Steffensmeier J.J.
        • Phillips B.B.
        • Zimmerman M.B.
        • et al.
        Comparative Antihypertensive effects of hydrochlorothiazide and chlorthalidone on ambulatory and office blood pressure.
        Hypertension. 2006; 47: 352-358
        • Bobrie G.
        • Frank M.
        • Azizi M.
        • Peyrard S.
        • Boutouyrie P.
        • Chatellier G.
        • et al.
        Sequential nephron blockade versus sequential renin–angiotensin system blockade in resistant hypertension: a prospective, randomized, open blinded endpoint study.
        J Hypertens. 2012; 30: 1656-1664
        • Schafflhuer M.
        • Vopi N.
        • Dahlmann A.
        • Hilgers K.F.
        • Maccari F.
        • et al.
        Mobilization of osmotically inactive Na+ by growth and by dietary salt restriction in rats.
        Am J Physiol Renal Physiol. 2007; 292: F1490-F1500
        • Edelman I.S.
        • Leibman J.
        • O’Meara M.P.
        • Birkenfeld L.W.
        Interrelations between serum sodium concentration, serum osmolarity, and total exchangeable sodium, total exchangeable potassium and total body water.
        J Clin Invest. 1989; 37: 1236-1256
        • Nguyen M.K.
        • Kurtz I.
        Reply to a commentary on the letter to the editor by Weschler on the dynamic regulation of the osmotically inactive sodium storage pool.
        Am J Physiol Integr Comp Physiol. 2012; 302: R899-R901
        • Overgaard-Steensen C.
        • Larsson A.
        • Bluhme H.
        • Tonnesen E.
        • Frokiaer J.
        • Ring T.
        Edelma’s equation is valid in acute hyponatremia in a porcine model: plasma sodium concentration is determined by external balances of water and cations.
        Am J Physiol Regul Integr Comp Physiol. 2010; 298: R120-R129
        • Titze J.
        • Lang R.
        • Ilies C.
        • Schwind K.H.
        • Kirsch K.A.
        • et al.
        Osmotically inactive skin Na+ storage in rats.
        Am J Physiol Rehabil Physiol. 2003; 285: F1108-F1117
        • Titze J.
        • Bauer K.
        • Schafflhuer M.
        • Dietsch P.
        • Lang R.
        • Schwind K.H.
        • et al.
        Internal sodium balance in DOCA-salt rats: a body composition study.
        Am J Physiol Renal Physiol. 2005; 289: F793-F802
        • Katholi R.E.
        Renal nerves and hypertension: an update.
        Fed Proc. 1985; 44: 2846-2850
        • Faber J.E.
        • Brody M.J.
        Afferent renal nerve-dependent hypertension following acute renal artery stenosis in the conscious rat.
        Circ Res. 1985; 57: 676-688
        • Calaresu F.R.
        • Ciriello J.
        Renal afferent nerves affect discharge rate of medullary and hypothalamic single units in the cat.
        J Auton Nerv Syst. 1981; 3: 311-320
        • Bigazzi R.
        • Kogosov E.
        • Campese V.M.
        Altered norepinephrine turnover in the brain of rats with chronic renal failure.
        J Am Soc Nephrol. 1994; 4: 1901-1907
        • Ye S.
        • Ozgur B.
        • Campese V.M.
        Renal afferent impulses, the posterior hypothalamus, and hypertension in rats with chronic renal failure.
        Kidney Int. 1997; 51: 722-727
        • Converse Jr, R.L.
        • Jacobsen T.N.
        • Toto R.D.
        • et al.
        Sympathetic overactivity in patients with chronic renal failure.
        N Engl J Med. 1992; 327: 1912-1918
        • Ligtenberg G.
        • Blankestijn P.J.
        • Oey P.L.
        • et al.
        Reduction of sympathetic hyperactivity by enalapril in patients with chronic renal failure.
        N Engl J Med. 1999; 340: 1321-1328
        • Miyajima E.
        • Yamada Y.
        • Yoshida Y.
        • et al.
        Muscle sympathetic nerve activity in renovascular hypertension and primary aldosteronism.
        Hypertension. 1991; 17: 1057-1062
        • Klein I.H.
        • Ligtenberg G.
        • Oey P.L.
        • et al.
        Sympathetic activity is increased in polycystic kidney disease and is associated with hypertension.
        J Am Soc Nephrol. 2001; 12: 2427-2433
        • Zhang W.
        • Li J.L.
        • Hosaka M.
        • et al.
        Cyclosporine A-induced hypertension involves synapsin in renal sensory nerve endings.
        Proc Natl Acad Sci U S A. 2000; 97: 9765-9770
        • Amann K.
        • Rump L.C.
        • Simonaviciene A.
        • et al.
        Effects of low dose sympathetic inhibition on glomerulosclerosis and albuminuria in subtotally nephrectomized rats.
        J Am Soc Nephrol. 2000; 11: 1469-1478
        • Zoccali C.
        • Mallamaci F.
        • Parlongo S.
        • et al.
        Plasma norepinephrine predicts survival and incident cardiovascular events in patients with end-stage renal disease.
        Circulation. 2002; 105: 1354-1359
        • Ye S.
        • Zhong H.
        • Duong V.N.
        • Campese V.M.
        Losartan reduces central and peripheral sympathetic nerve activity in a rat model of neurogenic hypertension.
        Hypertension. 2002; 39: 1101-1106
        • Kuchel O.G.
        • Shigetomi S.
        Dopaminergic abnormalities in hypertension associated with moderate renal insufficiency.
        Hypertension. 1994; 23: I240-I245
        • Pickering T.G.
        • Gribbin B.
        • Oliver D.O.
        Baroreflex sensitivity in patients on long-term haemodialysis.
        Clin Sci. 1972; 42: 10P
        • Smith R.
        • Grossman A.
        • Gaillard R.
        • et al.
        Studies on circulating met-enkephalin and P-endorphin: normal subjects and patients with renal and adrenal disease.
        Clin Endocrinol. 1981; 15: 291-300
        • Thornton J.R.
        • Losowsky M.S.
        Plasma β-endorphin in cirrhosis and renal failure.
        Gut. 1991; 32: 306-308
        • Elias A.N.
        • Vaziri N.D.
        Plasma catecholamines in chronic renal disease.
        Int J Artif Organs. 1985; 8: 243-244
        • Wolf G.
        • Chen S.
        • Han D.C.
        • Ziyadeh F.N.
        Leptin and renal disease.
        Am J Kidney Dis. 2002; 39: 1-11
        • Xu J.
        • Li G.
        • Wang P.
        • Velazquez H.
        • Yao X.
        • Li Y.
        • et al.
        Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure.
        J Clin Invest. 2005; 115: 1275-1280
        • Desir G.V.
        • Wang L.
        • Peixoto A.J.
        Human renalase: a review of its biology, function, and implications for hypertension.
        J Am Soc Hypertens. 2012; 6: 417-426
        • Malyszko J.
        • Koc-Zorawska E.
        • Malyszko J.S.
        • Kozminski P.
        • Zbroch E.
        • Mysliwiec M.
        Renalase, stroke, and hypertension in hemodialyzed patient.
        Ren Fail. 2012; 34: 727-731
        • Schlaich M.
        • Socratous F.
        • Eikelis N.
        • Chopra R.
        • Lambert G.
        • Hennebry S.
        Renalase plasma levels are associated with systolic blood pressure in patients with resistant hypertension [abstract].
        J Hypertens. 2010; 28: e437
        • Zhao Q.
        • Fan Z.
        • He J.
        • Chen S.
        • Li H.
        • Zhang P.
        • et al.
        Renalase gene is a novel susceptibility gene for essential hypertension: a two-stage association study in northern Han Chinese population.
        J Mol Med (Berl). 2007; 85: 877-885
        • Stec A.
        • Semczuk A.
        • Furmaga J.
        • Ksiazek A.
        • Buraczynska M.
        Polymorphism of the renalase gene in end-stage renal disease patients affected by hypertension.
        Nephrol Dial Transplant. 2012; 27: 4162-4166
        • Farzaneh-Far R.
        • Desir G.V.
        • Na B.
        • Schiller N.B.
        • Whooley M.A.
        A functional polymorphism in renalase (Glu37Asp) is associated with cardiac hypertrophy, dysfunction, and ischemia: data from the heart and soul study.
        PLoS One. 2010; 5: e13496
        • Fava C.
        • Montagnana M.
        • Danese E.
        • Sjögren M.
        • Almgren P.
        • Engström G.
        • et al.
        The Renalase Asp37Glu polymorphism is not associated with hypertension and cardiovascular events in an urban-based prospective cohort: the Malmö Diet and cancer study.
        BMC Med Genet. 2012; 13: 57
        • Krum H.
        • Schlaich M.P.
        • Whitbourn R.
        • et al.
        Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study.
        Lancet. 2009; 373: 1275-1281
        • Campese V.M.
        Interventional hypertension: a new hope or a new hype? The need to redefine resistant hypertension.
        J Hypertens. 2013; 31: 2118-2122
        • Hering D.
        • Mahfoud F.
        • Walton A.S.
        • Krum H.
        • Lambert G.W.
        • et al.
        Renal denervation in moderate to severe CKD.
        J Am Soc Nephrol. 2012; 23: 1250-1257
        • Shultz P.J.
        An emerging role for endothelin in renal disease.
        J Lab Clin Med. 1992; 119: 448-449
        • Schiffrin E.L.
        • Lipman M.L.
        • Mann J.F.
        Chronic kidney disease: effects on the cardiovascular system.
        Circulation. 2007; 116: 85-97
        • Vaziri N.D.
        • Ni Z.
        • Wang X.Q.
        • et al.
        Downregulation of nitric oxide synthase in chronic renal insufficiency: role of excess PTH.
        Am J Physiol. 1998; 274: F642-F649
        • Schwedhelm E.
        • Boger R.H.
        The role of asymmetric and symmetric dimethylarginines in renal disease.
        Nat Rev Nephrol. 2011; 7: 275-285
        • Anderstam B.
        • Katzarski K.
        • Bergstrom J.
        Serum levels of NG NG-dimethyl-L-arginine, a potential endogenous nitric oxide inhibitor in dialysis patients.
        J Am Soc Nephrol. 1997; 8: 1437-1442
        • Vallance P.
        • Leone A.
        • Calver A.
        • et al.
        Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure.
        Lancet. 1992; 339: 572-575
        • Kielstein J.T.
        • Boger R.H.
        • Bode-Boger S.M.
        • et al.
        Asymmetric dimethylarginine plasma concentrations differ in patients with end-stage renal disease: relationship to treatment method and atherosclerotic disease.
        J Am Soc Nephrol. 1999; 10: 594-600
        • Zoccali C.
        • Bode-Boger S.
        • Mallamaci F.
        • et al.
        Plasma concentration of asymmetrical dimethylarginine and mortality in patients with end-stage renal disease: a prospective study.
        Lancet. 2001; 358: 2113-2117
        • Dhaun N.
        • Goddard J.
        • Webb D.J.
        The endothelin system and its antagonism in chronic kidney disease.
        J Am Soc Nephrol. 2006; 17: 943-955
        • Suzuki N.
        • Matsumoto H.
        • Miyauchi T.
        • et al.
        Endothelin-3 concentrations in human plasma: the increased concentrations in patients undergoing haemodialysis.
        Biochem Biophys Res Commun. 1990; 169: 809-815
        • Goddard J.
        • Eckhart C.
        • Johnston N.R.
        • et al.
        Endothelin A receptor antagonism and angiotensin-converting enzyme inhibition are synergistic via an endothelin B receptor-mediated and nitric oxide-dependent mechanism.
        J Am Soc Nephrol. 2004; 15: 2601-2610
        • Dhaun N.
        • Melville V.
        • Blackwell S.
        • Talwar D.K.
        • Johnston N.R.
        • Goddard J.
        • et al.
        Endothelin-A receptor antagonism modifies cardiovascular risk factors in CKD.
        J Am Soc Nephrol. 2012; 24: 31-36
        • Mitchell G.F.
        • Parise H.
        • Benjamin E.J.
        • et al.
        Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham Heart Study.
        Hypertension. 2004; 43: 1239-1245
        • Blacher J.
        • Guerin A.P.
        • Pannier B.
        • et al.
        Impact of aortic stiffness on survival in end-stage renal disease.
        Circulation. 1999; 99: 2434-2439
        • Klassen P.S.
        • Lowrie E.G.
        • Reddan D.N.
        • et al.
        Association between pulse pressure and mortality in patients undergoing maintenance hemodialysis.
        JAMA. 2002; 287: 1548-1555
        • Morris S.T.
        • McMurray J.J.
        • Spiers A.
        • Jardine A.G.
        Impaired endothelial function in isolated human uremic resistance arteries.
        Kidney Int. 2001; 60: 1077-1082
        • Rostand S.G.
        • Drueke T.B.
        Parathyroid hormone, vitamin D, and cardiovascular disease in chronic renal failure.
        Kidney Int. 1999; 56: 383-392
        • Albaladejo P.
        • Bouaziz H.
        • Duriez M.
        • et al.
        Angiotensin converting enzyme inhibition prevents the increase in aortic collagen in rats.
        Hypertension. 1994; 23: 74-82
        • Ferrier K.E.
        • Muhlmann M.H.
        • Baguet J.P.
        • et al.
        Intensive cholesterol reduction lowers blood pressure and large artery stiffness in isolated systolic hypertension.
        J Am Coll Cardiol. 2002; 39: 1020-1025