Advertisement

An Overview of Pathways of Regulated Necrosis in Acute Kidney Injury

      Summary

      Necrosis is the predominant form of regulated cell death in acute kidney injury (AKI) and represents results in the formation of casts that appear in the urine sedimentation, referred to as muddy brown casts, which are part of the diagnosis of AKI. Pathologists referred to this typical feature as acute tubular necrosis. We are only beginning to understand the dynamics and the molecular pathways that underlie such typical necrotic morphology. In this review, we provide an overview of candidate pathways and summarize the emerging evidence for the relative contribution of these pathways of regulated necrosis, such as necroptosis, ferroptosis, mitochondrial permeability transition–mediated regulated necrosis, parthanatos, and pyroptosis. Inhibitors of each of these pathways are available, and clinical trials may be started after the detection of the most promising drug targets, which will be discussed here. With the global burden of AKI in mind, inhibitiors of regulated necrosis represent promising means to prevent this disease.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Nephrology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mulay S.R.
        • Linkermann A.
        • Anders H.-J.
        Necroinflammation in kidney disease.
        J Am Soc Nephrol. 2016; 27: 27-39
        • Linkermann A.
        • Stockwell B.R.
        • Krautwald S.
        • Anders H.
        Regulated cell death and inflammation: an auto-amplification loop causes organ failure.
        Nat Rev Immunol. 2014; 14: 759-767
        • Galluzzi L.
        • Bravo-San Pedro J.M.
        • Vitale I.
        • et al.
        Essential versus accessory aspects of cell death: recommendations of the NCCD 2015.
        Cell Death Differ. 2014; 22: 58-73
        • Desai J.
        • Vr S.K.
        • Mulay S.R.
        • et al.
        Neutrophil extracellular trap formation can involve RIPK1-RIPK3-MLKL signalling.
        Eur J Immunol. 2016; 46: 223-229
        • Kaiser W.J.
        • Upton J.W.
        • Mocarski E.S.
        Receptor-interacting protein homotypic interaction motif-dependent control of NF-kappa B activation via the DNA-dependent activator of IFN regulatory factors.
        J Immunol. 2008; 181: 6427-6434
        • Mandal P.
        • Berger S.B.
        • Pillay S.
        • et al.
        RIP3 induces apoptosis independent of pronecrotic kinase activity.
        Mol Cell. 2014; 56: 481-495
        • Leemans J.C.
        • Kors L.
        • Anders H.-J.
        • et al.
        Pattern recognition receptors and the inflammasome in kidney disease.
        Nat Rev Nephrol. 2014; 10: 398-414
        • Ikeda F.
        Linear ubiquitination signals in adaptive immune responses.
        Immunol Rev. 2015; 266: 222-236
        • Ikeda F.
        • Deribe Y.L.
        • Skånland S.S.
        • et al.
        SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis.
        Nature. 2011; 471: 637-641
        • Boisson B.
        • Laplantine E.
        • Prando C.
        • et al.
        Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency.
        Nat Immunol. 2012; 13: 1178-1186
        • Peltzer N.
        • Rieser E.
        • Taraborrelli L.
        • et al.
        HOIP deficiency causes embryonic lethality by aberrant TNFR1-mediated endothelial cell death.
        Cell Rep. 2014; 9: 153-165
        • Rodgers M.A.
        • Bowman J.W.
        • Fujita H.
        • et al.
        The linear ubiquitin assembly complex (LUBAC) is essential for NLRP3 inflammasome activation.
        J Exp Med. 2014; 211: 1333-1347
        • Sanz A.B.
        • Sanchez-Niño M.D.
        • Ortiz A.
        TWEAK, a multifunctional cytokine in kidney injury.
        Kidney Int. 2011; 80 (708-18)
        • Rodriguez D.A.
        • Weinlich R.
        • Brown S.
        • et al.
        Characterization of RIPK3-mediated phosphorylation of the activation loop of MLKL during necroptosis.
        Cell Death Differ. 2016; 23: 76-88
        • Kearney C.J.
        • Cullen S.P.
        • Clancy D.
        • et al.
        RIPK1 can function as an inhibitor rather than an initiator of RIPK3-dependent necroptosis.
        FEBS J. 2014; 281: 4921-4934
        • Orozco S.
        • Yatim N.
        • Werner M.R.
        • et al.
        RIPK1 both positively and negatively regulates RIPK3 oligomerization and necroptosis.
        Cell Death Differ. 2014; 21: 1511-1521
        • Rickard J.A.
        • O’Donnell J.A.
        • Evans J.M.
        • et al.
        RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis.
        Cell. 2014; 157: 1175-1188
        • Dillon C.P.
        • Weinlich R.
        • Rodriguez D.A.
        • et al.
        RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3.
        Cell. 2014; 157: 1189-1202
        • Kaiser W.J.
        • Daley-Bauer L.P.
        • Thapa R.J.
        • et al.
        RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition.
        Proc Natl Acad Sci U S A. 2014; 111: 7753-7758
        • Roderick J.E.
        • Hermance N.
        • Zelic M.
        • et al.
        Hematopoietic RIPK1 deficiency results in bone marrow failure caused by apoptosis and RIPK3-mediated necroptosis.
        Proc Natl Acad Sci U S A. 2014; 111: 14436-14441
        • Kaiser W.J.
        • Sridharan H.
        • Huang C.
        • et al.
        Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL.
        J Biol Chem. 2013; 288: 31268-31279
        • McComb S.
        • Cessford E.
        • Alturki N.A.
        • et al.
        Type-I interferon signaling through ISGF3 complex is required for sustained Rip3 activation and necroptosis in macrophages.
        Proc Natl Acad Sci U S A. 2014; 111: E3206-E3213
        • Günther C.
        • Buchen B.
        • He G.-W.
        • et al.
        Caspase-8 controls the gut response to microbial challenges by Tnf-α-dependent and independent pathways.
        Gut. 2015; 64: 601-610
        • Upton J.W.
        • Kaiser W.J.
        • Mocarski E.S.
        DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA.
        Cell Host Microbe. 2012; 11: 290-297
        • Dondelinger Y.
        • Declercq W.
        • Montessuit S.
        • et al.
        MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates.
        Cell Rep. 2014; 7: 971-981
        • Omoto S.
        • Guo H.
        • Talekar G.R.
        • Roback L.
        • Kaiser W.J.
        • Mocarski E.S.
        Suppression of RIP3-dependent necroptosis by human cytomegalovirus.
        J Biol Chem. 2015; 290: 11635-11648
        • Mocarski E.S.
        • Guo H.
        • Kaiser W.J.
        Necroptosis: the Trojan horse in cell autonomous antiviral host defense.
        Virology. 2015; 479-480: 160-166
        • Tait S.W.G.
        • Oberst A.
        • Quarato G.
        • et al.
        Widespread mitochondrial depletion via mitophagy does not compromise necroptosis.
        Cell Rep. 2013; 5: 878-885
        • Bonora M.
        • Bononi A.
        • De Marchi E.
        • et al.
        Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition.
        Cell Cycle. 2013; 12: 674-683
        • Alavian K.N.
        • Beutner G.
        • Lazrove E.
        • et al.
        An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore.
        Proc Natl Acad Sci U S A. 2014; 111: 10580-10585
        • Zamaraeva M.V.
        • Sabirov R.Z.
        • Maeno E.
        • et al.
        Cells die with increased cytosolic ATP during apoptosis: a bioluminescence study with intracellular luciferase.
        Cell Death Differ. 2005; 12: 1390-1397
        • Nicotera P.
        • Leist M.
        • Ferrando-May E.
        Intracellular ATP, a switch in the decision between apoptosis and necrosis.
        Toxicol Lett. 1998; 102-103: 139-142
        • Leist M.
        • Single B.
        • Castoldi A.F.
        • Kühnle S.
        • Nicotera P.
        Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis.
        J Exp Med. 1997; 185: 1481-1486
        • Saelens X.
        • Festjens N.
        • Parthoens E.
        • et al.
        Protein synthesis persists during necrotic cell death.
        J Cell Biol. 2005; 168: 545-551
        • Vanden Berghe T.
        • Kalai M.
        • Denecker G.
        • Meeus A.
        • Saelens X.
        • Vandenabeele P.
        Necrosis is associated with IL-6 production but apoptosis is not.
        Cell Signal. 2006; 18: 328-335
        • Irazu C.E.
        • Ruidera E.
        • Singh I.
        • Orak J.K.
        • Fitts C.T.
        • Rajagopalan P.R.
        Effect of ischemia and 24 hour reperfusion on ATP synthesis in the rat kidney.
        J Exp Pathol. 1989; 4: 29-36
        • Hildebrand J.M.
        • Tanzer M.C.
        • Lucet I.S.
        • et al.
        Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death.
        Proc Natl Acad Sci U S A. 2014; 111: 15072-15077
        • Gibson B.A.
        • Kraus W.L.
        New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs.
        Nat Rev Mol Cell Biol. 2012; 13: 411-424
        • Andrabi S.A.
        • Umanah G.K.E.
        • Chang C.
        • et al.
        Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis.
        Proc Natl Acad Sci. 2014; 111: 10209-10214
        • Preyat N.
        • Leo O.
        Complex role of nicotinamide adenine dinucleotide in the regulation of programmed cell death pathways.
        Biochem Pharmacol. 2016; 101: 13-26
        • Andrabi S.A.
        • Dawson T.M.
        • Dawson V.L.
        Mitochondrial and nuclear cross talk in cell death: parthanatos.
        Ann N Y Acad Sci. 2008; 1147: 233-241
        • Bonora M.
        • Bravo-San Pedro J.M.
        • Kroemer G.
        • Galluzzi L.
        • Pinton P.
        Novel insights into the mitochondrial permeability transition.
        Cell Cycle. 2014; 13: 2666-2670
        • Newton K.
        • Hildebrand J.M.
        • Shen Z.
        • et al.
        Is SIRT2 required for necroptosis?.
        Nature. 2014; 506: E4-E6
        • Preyat N.
        • Rossi M.
        • Kers J.
        • et al.
        Intracellular nicotinamide adenine dinucleotide promotes TNF-induced necroptosis in a sirtuin-dependent manner.
        Cell Death Differ. 2016; 23: 29-40
        • Friedmann Angeli J.P.
        • Schneider M.
        • Proneth B.
        • et al.
        Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice.
        Nat Cell Biol. 2014; 16: 1180-1191
        • Yang W.S.
        • SriRamaratnam R.
        • Welsch M.E.
        • et al.
        Regulation of ferroptotic cancer cell death by GPX4.
        Cell. 2014; 156: 317-331
        • Yang W.S.
        • Stockwell B.R.
        Ferroptosis: death by lipid peroxidation.
        Trends Cell Biol. 2016; 26: 165-176
        • Dixon S.J.
        • Lemberg K.M.
        • Lamprecht M.R.
        • et al.
        Ferroptosis: an iron-dependent form of nonapoptotic cell death.
        Cell. 2012; 149: 1060-1072
        • Gao M.
        • Monian P.
        • Quadri N.
        • Ramasamy R.
        • Jiang X.
        Glutaminolysis and transferrin regulate ferroptosis.
        Mol Cell. 2015; 59: 298-308
        • Henao-Mejia J.
        • Elinav E.
        • Strowig T.
        • Flavell R.A.
        Inflammasomes: far beyond inflammation.
        Nat Immunol. 2012; 13: 321-324
        • Leemans J.C.
        • Cassel S.L.
        • Sutterwala F.S.
        Sensing damage by the NLRP3 inflammasome.
        Immunol Rev. 2011; 243: 152-162
        • Lamkanfi M.
        • Dixit V.M.
        Mechanisms and functions of inflammasomes.
        Cell. 2014; 157: 1013-1022
        • Vanaja S.K.
        • Rathinam V.A.K.
        • Fitzgerald K.A.
        Mechanisms of inflammasome activation: recent advances and novel insights.
        Trends Cell Biol. 2015; 25: 308-315
        • Cullen S.P.
        • Kearney C.J.
        • Clancy D.M.
        • Martin S.J.
        Diverse activators of the NLRP3 inflammasome promote IL-1β secretion by triggering necrosis.
        Cell Rep. 2015; 11: 1535-1548
        • Shi J.
        • Zhao Y.
        • Wang K.
        • et al.
        Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death.
        Nature. 2015; 526: 660-665
        • Kayagaki N.
        • Stowe I.B.
        • Lee B.L.
        • et al.
        Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling.
        Nature. 2015; 526: 666-671
        • He W.
        • Wan H.
        • Hu L.
        • et al.
        Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion.
        Cell Res. 2015; 25: 1285-1298
        • Yang D.
        • He Y.
        • Muñoz-Planillo R.
        • Liu Q.
        • Núñez G.
        Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock.
        Immunity. 2015; 43: 923-932
        • Pasparakis M.
        • Vandenabeele P.
        Necroptosis and its role in inflammation.
        Nature. 2015; 517: 311-320
        • Lau A.
        • Wang S.
        • Jiang J.
        • et al.
        RIPK3-mediated necroptosis promotes donor kidney inflammatory injury and reduces allograft survival.
        Am J Transplant. 2013; 13: 2805-2818
        • Linkermann A.
        • Bräsen J.H.
        • Himmerkus N.
        • et al.
        Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury.
        Kidney Int. 2012; 81: 751-761
        • Xu Y.
        • Ma H.
        • Shao J.
        • et al.
        A role for tubular necroptosis in cisplatin-induced AKI.
        J Am Soc Nephrol. 2015; 26: 2647-2658
        • Linkermann A.
        • Heller J.-O.
        • Prókai A.
        • et al.
        The RIP1-kinase inhibitor necrostatin-1 prevents osmotic nephrosis and contrast-induced AKI in mice.
        J Am Soc Nephrol. 2013; 24: 1545-1557
        • Zhu Y.
        • Cui H.
        • Gan H.
        • et al.
        Necroptosis mediated by receptor interaction protein kinase 1 and 3 aggravates chronic kidney injury of subtotal nephrectomised rats.
        Biochem Biophys Res Commun. 2015; 461: 575-581
        • Takahashi N.
        • Duprez L.
        • Grootjans S.
        • et al.
        Necrostatin-1 analogues: critical issues on the specificity, activity and in vivo use in experimental disease models.
        Cell Death Dis. 2012; 3: e437
        • Vandenabeele P.
        • Grootjans S.
        • Callewaert N.
        • Takahashi N.
        Necrostatin-1 blocks both RIPK1 and IDO: consequences for the study of cell death in experimental disease models.
        Cell Death Differ. 2013; 20: 185-187
        • Linkermann A.
        • Bräsen J.H.
        • Darding M.
        • et al.
        Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury.
        Proc Natl Acad Sci U S A. 2013; 110: 12024-12029
        • Hakroush S.
        • Cebulla A.
        • Schaldecker T.
        • Behr D.
        • Mundel P.
        • Weins A.
        Extensive podocyte loss triggers a rapid parietal epithelial cell response.
        J Am Soc Nephrol. 2014; 25: 927-938
        • Wang H.
        • Sun L.
        • Su L.
        • et al.
        Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3.
        Mol Cell. 2014; 54: 133-146
        • Zhang D.-W.
        • Shao J.
        • Lin J.
        • et al.
        RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis.
        Science. 2009; 325: 332-336
        • Justo P.
        • Sanz A.B.
        • Sanchez-Niño M.D.
        • et al.
        Cytokine cooperation in renal tubular cell injury: the role of TWEAK.
        Kidney Int. 2006; 70: 1750-1758
        • Burne M.J.
        • Elghandour A.
        • Haq M.
        • et al.
        IL-1 and TNF independent pathways mediate ICAM-1/VCAM-1 up-regulation in ischemia reperfusion injury.
        J Leukoc Biol. 2001; 70: 192-198
        • Ramesh G.
        • Reeves W.B.
        TNFR2-mediated apoptosis and necrosis in cisplatin-induced acute renal failure.
        Am J Physiol Renal Physiol. 2003; 285: F610-F618
        • Furuichi K.
        • Kokubo S.
        • Hara A.
        • et al.
        Fas ligand has a greater impact than TNF-α on apoptosis and inflammation in ischemic acute kidney injury.
        Nephron Extra. 2012; 2: 27-38
        • Thapa R.J.
        • Basagoudanavar S.H.
        • Nogusa S.
        • et al.
        NF-kappaB protects cells from gamma interferon-induced RIP1-dependent necroptosis.
        Mol Cell Biol. 2011; 31: 2934-2946
        • Thapa R.J.
        • Chen P.
        • Cheung M.
        • et al.
        NF-κB inhibition by bortezomib permits IFN-γ-activated RIP1 kinase-dependent necrosis in renal cell carcinoma.
        Mol Cancer Ther. 2013; 12: 1568-1578
        • Thapa R.J.
        • Nogusa S.
        • Chen P.
        • et al.
        Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases.
        Proc Natl Acad Sci U S A. 2013; 110: E3109-E3118
        • Halloran P.F.
        • Afrouzian M.
        • Ramassar V.
        • et al.
        Interferon-gamma acts directly on rejecting renal allografts to prevent graft necrosis.
        Am J Pathol. 2001; 158: 215-226
        • Freitas M.C.S.
        • Uchida Y.
        • Lassman C.
        • Danovitch G.M.
        • Busuttil R.W.
        • Kupiec-Weglinski J.W.
        Type I interferon pathway mediates renal ischemia/reperfusion injury.
        Transplantation. 2011; 92: 131-138
        • Leemans J.C.
        • Stokman G.
        • Claessen N.
        • et al.
        Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney.
        J Clin Invest. 2005; 115: 2894-2903
        • Paulus P.
        • Rupprecht K.
        • Baer P.
        • et al.
        The early activation of toll-like receptor (TLR)-3 initiates kidney injury after ischemia and reperfusion.
        PLoS One. 2014; 9: e94366
        • Pulskens W.P.
        • Teske G.J.
        • Butter L.M.
        • et al.
        Toll-like receptor-4 coordinates the innate immune response of the kidney to renal ischemia/reperfusion injury.
        PLoS One. 2008; 3: e3596
        • Wu H.
        • Chen G.
        • Wyburn K.R.
        • et al.
        TLR4 activation mediates kidney ischemia/reperfusion injury.
        J Clin Invest. 2007; 117: 2847-2859
        • Bakker P.J.
        • Scantlebery A.M.
        • Butter L.M.
        • et al.
        TLR9 mediates remote liver injury following severe renal ischemia reperfusion.
        PLoS One. 2015; 10: e0137511
        • Iyer S.S.
        • Pulskens W.P.
        • Sadler J.J.
        • et al.
        Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome.
        Proc Natl Acad Sci U S A. 2009; 106: 20388-20393
        • Dessing M.C.
        • Kers J.
        • Damman J.
        • et al.
        Toll-like receptor family polymorphisms are associated with primary renal diseases but not with renal outcomes following kidney transplantation.
        PLoS One. 2015; 10: e0139769
        • Kaczmarek A.
        • Vandenabeele P.
        • Krysko D.V.
        Necroptosis: the release of damage-associated molecular patterns and its physiological relevance.
        Immunity. 2013; 38: 209-223
        • Devalaraja-Narashimha K.
        • Diener A.M.
        • Padanilam B.J.
        Cyclophilin D gene ablation protects mice from ischemic renal injury.
        Am J Physiol Renal Physiol. 2009; 297: F749-F759
        • Park J.S.
        • Pasupulati R.
        • Feldkamp T.
        • Roeser N.F.
        • Weinberg J.M.
        Cyclophilin D and the mitochondrial permeability transition in kidney proximal tubules after hypoxic and ischemic injury.
        Am J Physiol Renal Physiol. 2011; 301: F134-F150
        • Hu W.
        • Chen Z.
        • Ye Z.
        • et al.
        Knockdown of cyclophilin D gene by RNAi protects rat from ischemia/ reperfusion-induced renal injury.
        Kidney Blood Press Res. 2010; 33: 193-199
        • Yang C.W.
        • Ahn H.J.
        • Han H.J.
        • et al.
        Pharmacological preconditioning with low-dose cyclosporine or FK506 reduces subsequent ischemia/reperfusion injury in rat kidney.
        Transplantation. 2001; 72: 1753-1759
        • Shihab F.S.
        • Bennett W.M.
        • Andoh T.F.
        Donor preconditioning with a calcineurin inhibitor improves outcome in rat syngeneic kidney transplantation.
        Transplantation. 2009; 87: 326-329
        • Filipovic D.M.
        • Meng X.
        • Reeves W.B.
        Inhibition of PARP prevents oxidant-induced necrosis but not apoptosis in LLC-PK1 cells.
        Am J Physiol. 1999; 277: F428-F436
        • Chatterjee P.K.
        • Chatterjee B.E.
        • Pedersen H.
        • et al.
        5-Aminoisoquinolinone reduces renal injury and dysfunction caused by experimental ischemia/reperfusion.
        Kidney Int. 2004; 65: 499-509
        • Shin H.-J.
        • Kwon H.-K.
        • Lee J.-H.
        • et al.
        Doxorubicin-induced necrosis is mediated by poly-(ADP-ribose) polymerase 1 (PARP1) but is independent of p53.
        Sci Rep. 2015; 5: 15798
        • Park S.
        • Yoon S.P.
        • Kim J.
        Cisplatin induces primary necrosis through poly(ADP-ribose) polymerase 1 activation in kidney proximal tubular cells.
        Anat Cell Biol. 2015; 48: 66-74
        • Dalaklioglu S.
        • Tekcan M.
        • Gungor N.E.
        • et al.
        Role of the poly(ADP-ribose)polymerase activity in vancomycin-induced renal injury.
        Toxicol Lett. 2010; 192: 91-96
        • Mukhopadhyay P.
        • Horváth B.
        • Kechrid M.
        • et al.
        Poly(ADP-ribose) polymerase-1 is a key mediator of cisplatin-induced kidney inflammation and injury.
        Free Radic Biol Med. 2011; 51: 1774-1788
        • Kim J.
        • Long K.E.
        • Tang K.
        • Padanilam B.J.
        Poly(ADP-ribose) polymerase 1 activation is required for cisplatin nephrotoxicity.
        Kidney Int. 2012; 82: 193-203
        • Oztas E.
        • Guven A.
        • Turk E.
        • et al.
        3-Aminobenzamide, a poly ADP ribose polymerase inhibitor, attenuates renal ischemia/reperfusion injury.
        Ren Fail. 2009; 31: 393-399
        • del Moral R.M.G.
        • Gómez-Morales M.
        • Hernández-Cortés P.
        • et al.
        PARP inhibition attenuates histopathological lesion in ischemia/reperfusion renal mouse model after cold prolonged ischemia.
        ScientificWorldJournal. 2013; 2013: 486574
        • Ferreyra C.
        • Vargas F.
        • Rodríguez-Gómez I.
        • Pérez-Abud R.
        • O’Valle F.
        • Osuna A.
        Preconditioning with triiodothyronine improves the clinical signs and acute tubular necrosis induced by ischemia/reperfusion in rats.
        PLoS One. 2013; 8: e74960
        • Kalmar-Nagy K.
        • Degrell P.
        • Szabo A.
        • et al.
        PARP inhibition attenuates acute kidney allograft rejection by suppressing cell death pathways and activating PI-3K-Akt cascade.
        PLoS One. 2013; 8: e81928
        • Okada H.
        • Inoue T.
        • Kikuta T.
        • et al.
        Poly(ADP-ribose) polymerase-1 enhances transcription of the profibrotic CCN2 gene.
        J Am Soc Nephrol. 2008; 19: 933-942
        • Yoon S.P.
        • Kim J.
        Poly(ADP-ribose) polymerase 1 activation links ischemic acute kidney injury to interstitial fibrosis.
        J Physiol Sci. 2015; 65: 105-111
        • Zheng J.
        • Devalaraja-narashimha K.
        • Singaravelu K.
        • Padanilam B.J.
        • Sin K.
        • Adp-ribose B.J.P.P.
        Poly (ADP-ribose) polymerase-1 gene ablation protects mice from ischemic renal injury.
        Am J Physiol Renal Physiol. 2005; 288: F387-F398
        • Devalaraja-Narashimha K.
        • Padanilam B.J.
        PARP-1 inhibits glycolysis in ischemic kidneys.
        J Am Soc Nephrol. 2009; 20: 95-103
        • Pétrilli V.
        • Herceg Z.
        • Hassa P.O.
        • et al.
        Noncleavable poly(ADP-ribose) polymerase-1 regulates the inflammation response in mice.
        J Clin Invest. 2004; 114: 1072-1081
        • Hassa P.O.
        • Covic M.
        • Hasan S.
        • Imhof R.
        • Hottiger M.O.
        The enzymatic and DNA binding activity of PARP-1 are not required for NF-kappa B coactivator function.
        J Biol Chem. 2001; 276: 45588-45597
        • O’Valle F.
        • Del Moral R.G.M.
        • del Carmén Benítez M.
        • et al.
        Poly[ADP-ribose] polymerase-1 expression is related to cold ischemia, acute tubular necrosis, and delayed renal function in kidney transplantation.
        PLoS One. 2009; 4: e7138
        • Tasatargil A.
        • Aksoy N.H.
        • Dalaklioglu S.
        • Sadan G.
        Poly (ADP-ribose) polymerase as a potential target for the treatment of acute renal injury caused by lipopolysaccharide.
        Ren Fail. 2008; 30: 115-120
        • Kapoor K.
        • Singla E.
        • Sahu B.
        • Naura A.S.
        PARP inhibitor, olaparib ameliorates acute lung and kidney injury upon intratracheal administration of LPS in mice.
        Mol Cell Biochem. 2014; 400: 153-162
        • Liu S.
        • Liu J.
        • Liu D.
        • Wang X.
        • Yang R.
        Inhibition of poly-(ADP-ribose) polymerase protects the kidney in a canine model of endotoxic shock.
        Nephron. 2015; 130: 53-64
        • Jog N.R.
        • Dinnall J.-A.
        • Gallucci S.
        • Madaio M.P.
        • Caricchio R.
        Poly(ADP-ribose) polymerase-1 regulates the progression of autoimmune nephritis in males by inducing necrotic cell death and modulating inflammation.
        J Immunol. 2009; 182: 7297-7306
        • Drel V.R.
        • Xu W.
        • Zhang J.
        • et al.
        Poly(adenosine 5’-diphosphate-ribose) polymerase inhibition counteracts multiple manifestations of experimental type 1 diabetic nephropathy.
        Endocrinology. 2009; 150: 5273-5283
        • Shevalye H.
        • Maksimchyk Y.
        • Watcho P.
        • Obrosova I.G.
        Poly(ADP-ribose) polymerase-1 (PARP-1) gene deficiency alleviates diabetic kidney disease.
        Biochim Biophys Acta. 2010; 1802: 1020-1027
        • Skouta R.
        • Dixon S.J.
        • Wang J.
        • et al.
        Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models.
        J Am Chem Soc. 2014; 136: 4551-4556
        • Linkermann A.
        • Skouta R.
        • Himmerkus N.
        • et al.
        Synchronized renal tubular cell death involves ferroptosis.
        Proc Natl Acad Sci U S A. 2014; 111: 16836-16841
        • Wortmann M.
        • Schneider M.
        • Pircher J.
        • et al.
        Combined deficiency in glutathione peroxidase 4 and vitamin E causes multiorgan thrombus formation and early death in mice.
        Circ Res. 2013; 113: 408-417
        • Krautwald S.
        • Linkermann A.
        The fire within: pyroptosis in the kidney.
        Am J Physiol Renal Physiol. 2014; 306: F168-F169
        • Shigeoka A.A.
        • Mueller J.L.
        • Kambo A.
        • et al.
        An inflammasome-independent role for epithelial-expressed Nlrp3 in renal ischemia-reperfusion injury.
        J Immunol. 2010; 185: 6277-6285
        • Bakker P.J.
        • Butter L.M.
        • Claessen N.
        • et al.
        A tissue-specific role for Nlrp3 in tubular epithelial repair after renal ischemia/reperfusion.
        Am J Pathol. 2014; 184: 2013-2022
        • Bakker P.J.
        • Butter L.M.
        • Kors L.
        • et al.
        Nlrp3 is a key modulator of diet-induced nephropathy and renal cholesterol accumulation.
        Kidney Int. 2013; 85: 1-11
        • Pulskens W.P.
        • Butter L.M.
        • Teske G.J.
        • et al.
        Nlrp3 prevents early renal interstitial edema and vascular permeability in unilateral ureteral obstruction.
        PLoS One. 2014; 9: e85775
        • Anders H.-J.
        • Lech M.
        NOD-like and Toll-like receptors or inflammasomes contribute to kidney disease in a canonical and a non-canonical manner.
        Kidney Int. 2013; 84: 225-228
        • Yang J.-R.
        • Yao F.-H.
        • Zhang J.-G.
        • et al.
        Ischemia-reperfusion induces renal tubule pyroptosis via the CHOP-caspase-11 pathway.
        Am J Physiol Renal Physiol. 2014; 306: F75-F84
        • Hanner F.
        • Lam L.
        • Nguyen M.T.X.
        • Yu A.
        • Peti-Peterdi J.
        Intrarenal localization of the plasma membrane ATP channel pannexin1.
        Am J Physiol Renal Physiol. 2012; 303: F1454-F1459
        • Abed A.B.
        • Kavvadas P.
        • Chadjichristos C.E.
        Functional roles of connexins and pannexins in the kidney.
        Cell Mol Life Sci. 2015; 72: 2869-2877
        • Tristão V.R.
        • Gonçalves P.F.
        • Dalboni M.A.
        • Batista M.C.
        • Durão M.D.S.
        • Monte J.C.M.
        Nec-1 protects against nonapoptotic cell death in cisplatin-induced kidney injury.
        Ren Fail. 2012; 34: 373-377
        • Tristão V.R.
        • Pessoa E.A.
        • Nakamichi R.
        • et al.
        Synergistic effect of apoptosis and necroptosis inhibitors in cisplatin-induced nephrotoxicity.
        Apoptosis. 2016; 21: 51-59
        • Liang X.
        • Chen Y.
        • Zhang L.
        • et al.
        Necroptosis, a novel form of caspase-independent cell death, contributes to renal epithelial cell damage in an ATP-depleted renal ischemia model.
        Mol Med Rep. 2014; 2: 719-724
        • Zhang L.
        • Jiang F.
        • Chen Y.
        • et al.
        Necrostatin-1 attenuates ischemia injury induced cell death in rat tubular cell line NRK-52E through decreased drp1 expression.
        Int J Mol Sci. 2013; 14: 24742-24754
        • Homsi E.
        • Andreazzi D.D.
        • Faria J.B.L.
        • de, Janino P.
        TNF-α-mediated cardiorenal injury after rhabdomyolysis in rats.
        Am J Physiol Renal Physiol. 2015; 308: F1259-F1267