Advertisement

Targeting Cell Death Pathways for Therapeutic Intervention in Kidney Diseases

      Summary

      Precise regulation of cell death and survival is essential for proper maintenance of organismal homeostasis, development, and the immune system. Deregulated cell death can lead to developmental defects, neuropathies, infections, and cancer. Kidney diseases, especially acute pathologies linked to ischemia-reperfusion injury, are among illnesses that profoundly are affected by improper regulation or execution of cell death pathways. Attempts to develop medicines for kidney diseases have been impacted by the complexity of these pathologies given the heterogeneous patient population and diverse etiologies. By analyzing cell death pathways activated in kidney diseases, we attempt to differentiate their importance for these pathologies with a goal of identifying those that have more profound impact and the best therapeutic potential. Although classic apoptosis still might be important, regulated necrosis pathways including necroptosis, ferroptosis, parthanatos, and mitochondrial permeability transition–associated cell death play a significantly role in kidney diseases, especially in acute kidney pathologies. Although targeting receptor-interacting protein 1 kinase appears to be the best therapeutic strategy, combination with inhibitors of other cell death pathways is likely to bring superior benefit and possible cure to patients suffering from kidney diseases.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Nephrology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chawla L.S.
        • Kimmel P.L.
        Acute kidney injury and chronic kidney disease: an integrated clinical syndrome.
        Kidney Int. 2012; 82: 516-524
        • Go A.S.
        • Ayus J.C.
        Chronic kidney disease, anemia, and epoetin.
        N Engl J Med. 2007; 356: 957-959
        • Go A.S.
        • Chertow G.M.
        • Fan D.
        • McCulloch C.E.
        • Hsu C.Y.
        Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization.
        N Engl J Med. 2004; 351: 1296-1305
        • Hsu C.Y.
        • McCulloch C.E.
        • Fan D.
        • Ordonez J.D.
        • Chertow G.M.
        • Go A.S.
        Community-based incidence of acute renal failure.
        Kidney Int. 2007; 72: 208-212
        • Susantitaphong P.
        • Cruz D.N.
        • Cerda J.
        • Abulfaraj M.
        • Alqahtani F.
        • Koulouridis I.
        • et al.
        World incidence of AKI: a meta-analysis.
        Clin J Am Soc Nephrol. 2013; 8: 1482-1493
        • Steller H.
        Mechanisms and genes of cellular suicide.
        Science. 1995; 267: 1445-1449
        • Vandenabeele P.
        • Galluzzi L.
        • Vanden Berghe T.
        • Kroemer G.
        Molecular mechanisms of necroptosis: an ordered cellular explosion.
        Nat Rev Mol Cell Biol. 2010; 11: 700-714
        • Salvesen G.S.
        • Abrams J.M.
        Caspase activation--stepping on the gas or releasing the brakes? Lessons from humans and flies.
        Oncogene. 2004; 23: 2774-2784
        • Budihardjo I.
        • Oliver H.
        • Lutter M.
        • Luo X.
        • Wang X.
        Biochemical pathways of caspase activation during apoptosis.
        Annu Rev Cell Dev Biol. 1999; 15: 269-290
        • Kaufmann S.H.
        • Vaux D.L.
        Alterations in the apoptotic machinery and their potential role in anticancer drug resistance.
        Oncogene. 2003; 22: 7414-7430
        • Youle R.J.
        • Strasser A.
        The BCL-2 protein family: opposing activities that mediate cell death.
        Nat Rev Mol Cell Biol. 2008; 9: 47-59
        • Riedl S.J.
        • Salvesen G.S.
        The apoptosome: signalling platform of cell death.
        Nat Rev Mol Cell Biol. 2007; 8: 405-413
        • Wei Q.
        • Dong G.
        • Chen J.K.
        • Ramesh G.
        • Dong Z.
        Bax and Bak have critical roles in ischemic acute kidney injury in global and proximal tubule-specific knockout mouse models.
        Kidney Int. 2013; 84: 138-148
        • Wei Q.
        • Dong G.
        • Franklin J.
        • Dong Z.
        The pathological role of Bax in cisplatin nephrotoxicity.
        Kidney Int. 2007; 72: 53-62
        • Guicciardi M.E.
        • Gores G.J.
        Life and death by death receptors.
        FASEB J. 2009; 23: 1625-1637
        • Peter M.E.
        • Krammer P.H.
        The CD95(APO-1/Fas) DISC and beyond.
        Cell Death Differ. 2003; 10: 26-35
        • Micheau O.
        • Tschopp J.
        Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes.
        Cell. 2003; 114: 181-190
        • Hsu H.
        • Huang J.
        • Shu H.B.
        • Baichwal V.
        • Goeddel D.V.
        TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex.
        Immunity. 1996; 4: 387-396
        • Dynek J.N.
        • Goncharov T.
        • Dueber E.C.
        • Fedorova A.V.
        • Izrael-Tomasevic A.
        • Phu L.
        • et al.
        c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling.
        EMBO J. 2010; 29: 4198-4209
        • Bertrand M.J.
        • Milutinovic S.
        • Dickson K.M.
        • Ho W.C.
        • Boudreault A.
        • Durkin J.
        • et al.
        cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination.
        Mol Cell. 2008; 30: 689-700
        • Vucic D.
        • Dixit V.M.
        • Wertz I.E.
        Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death.
        Nat Rev Mol Cell Biol. 2011; 12: 439-452
        • Irmler M.
        • Thome M.
        • Hahne M.
        • Schneider P.
        • Hofmann K.
        • Steiner V.
        • et al.
        Inhibition of death receptor signals by cellular FLIP.
        Nature. 1997; 388: 190-195
        • Kaufmann T.
        • Strasser A.
        • Jost P.J.
        Fas death receptor signalling: roles of Bid and XIAP.
        Cell Death Differ. 2012; 19: 42-50
        • Eckelman B.P.
        • Salvesen G.S.
        • Scott F.L.
        Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family.
        EMBO Rep. 2006; 7: 988-994
        • Furuichi K.
        • Kokubo S.
        • Hara A.
        • Imamura R.
        • Wang Q.
        • Kitajima S.
        • et al.
        Fas ligand has a greater impact than TNF-alpha on apoptosis and inflammation in ischemic acute kidney injury.
        Nephron Extra. 2012; 2: 27-38
        • Adachi T.
        • Sugiyama N.
        • Gondai T.
        • Yagita H.
        • Yokoyama T.
        Blockade of death ligand TRAIL inhibits renal ischemia reperfusion injury.
        Acta Histochem Cytochem. 2013; 46: 161-170
        • Sanz A.B.
        • Sanchez-Nino M.D.
        • Ortiz A.
        TWEAK, a multifunctional cytokine in kidney injury.
        Kidney Int. 2011; 80: 708-718
        • Poveda J.
        • Tabara L.C.
        • Fernandez-Fernandez B.
        • Martin-Cleary C.
        • Sanz A.B.
        • et al.
        TWEAK/Fn14 and non-canonical NF-kappaB signaling in kidney disease.
        Front Immunol. 2013; 4: 447
        • Sanchez-Nino M.D.
        • Benito-Martin A.
        • Goncalves S.
        • Sanz A.B.
        • Ucero A.C.
        • Izquierdo M.C.
        • et al.
        TNF superfamily: a growing saga of kidney injury modulators.
        Mediators Inflamm. 2010; 2010
        • Sanz A.B.
        • Izquierdo M.C.
        • Sanchez-Nino M.D.
        • Ucero A.C.
        • Egido J.
        • Ruiz-Ortega M.
        • et al.
        TWEAK and the progression of renal disease: clinical translation.
        Nephrol Dial Transplant. 2014; 29: i54-i62
        • Linkermann A.
        • Brasen J.H.
        • Himmerkus N.
        • Liu S.
        • Huber T.B.
        • Kunzendorf U.
        • et al.
        Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury.
        Kidney Int. 2012; 81: 751-761
        • Sun X.
        • Yin J.
        • Starovasnik M.A.
        • Fairbrother W.J.
        • Dixit V.M.
        Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (RIP) by RIP3.
        J Biol Chem. 2002; 277: 9505-9511
        • Vandenabeele P.
        • Declercq W.
        • Van Herreweghe F.
        • Vanden Berghe T.
        The role of the kinases RIP1 and RIP3 in TNF-induced necrosis.
        Signal. 2010; (re4.): 3
        • Cho Y.S.
        • Challa S.
        • Moquin D.
        • Genga R.
        • Ray T.D.
        • Guildford M.
        • et al.
        Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation.
        Cell. 2009; 137: 1112-1123
        • He S.
        • Wang L.
        • Miao L.
        • Wang T.
        • Du F.
        • Zhao L.
        • et al.
        Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha.
        Cell. 2009; 137: 1100-1111
        • Vanlangenakker N.
        • Vanden Berghe T.
        • Bogaert P.
        • Laukens B.
        • Zobel K.
        • Deshayes K.
        • et al.
        cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production.
        Cell Death Differ. 2011; 18: 656-665
        • Degterev A.
        • Hitomi J.
        • Germscheid M.
        • Ch’en I.L.
        • Korkina O.
        • Teng X.
        • et al.
        Identification of RIP1 kinase as a specific cellular target of necrostatins.
        Nat Chem Biol. 2008; 4: 313-321
        • Newton K.
        • Dugger D.L.
        • Wickliffe K.E.
        • Kapoor N.
        • de Almagro M.C.
        • Vucic D.
        • et al.
        Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis.
        Science. 2014; 343: 1357-1360
        • Kaiser W.J.
        • Sridharan H.
        • Huang C.
        • Mandal P.
        • Upton J.W.
        • Gough P.J.
        • et al.
        Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL.
        J Biol Chem. 2013; 288: 31268-31279
        • Zhao J.
        • Jitkaew S.
        • Cai Z.
        • Choksi S.
        • Li Q.
        • Luo J.
        • et al.
        Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis.
        Proc Natl Acad Sci U S A. 2012; 109: 5322-5327
        • Sun L.
        • Wang H.
        • Wang Z.
        • He S.
        • Chen S.
        • Liao D.
        • Wang L.
        • et al.
        Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase.
        Cell. 2012; 148: 213-227
        • Wang H.
        • Sun L.
        • Su L.
        • Rizo J.
        • Liu L.
        • Wang L.F.
        • et al.
        Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3.
        Mol Cell. 2014; 54: 133-146
        • Cai Z.
        • Jitkaew S.
        • Zhao J.
        • Chiang H.C.
        • Choksi S.
        • Liu J.
        • et al.
        Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis.
        Nat Cell Biol. 2014; 16: 55-65
        • Dondelinger Y.
        • Declercq W.
        • Montessuit S.
        • Roelandt R.
        • Goncalves A.
        • Bruggeman I.
        • et al.
        MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates.
        Cell Rep. 2014; 7: 971-981
        • Linkermann A.
        • Brasen J.H.
        • Darding M.
        • Jin M.K.
        • Sanz A.B.
        • Heller J.O.
        • et al.
        Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury.
        Proc Natl Acad Sci U S A. 2013; 110: 12024-12029
        • Lau A.
        • Wang S.
        • Jiang J.
        • Haig A.
        • Pavlosky A.
        • Linkermann A.
        • et al.
        RIPK3-mediated necroptosis promotes donor kidney inflammatory injury and reduces allograft survival.
        Am J Transplant. 2013; 13: 2805-2818
        • de Gassart A.
        • Martinon F.
        Pyroptosis: caspase-11 unlocks the gates of death.
        Immunity. 2015; 43: 835-837
        • Aachoui Y.
        • Sagulenko V.
        • Miao E.A.
        • Stacey K.J.
        Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection.
        Curr Opin Microbiol. 2013; 16: 319-326
        • Shi J.
        • Zhao Y.
        • Wang Y.
        • Gao W.
        • Ding J.
        • Li P.
        • et al.
        Inflammatory caspases are innate immune receptors for intracellular LPS.
        Nature. 2014; 514: 187-192
        • Kayagaki N.
        • Warming S.
        • Lamkanfi M.
        • Vande Walle L.
        • Louie S.
        • Dong J.
        • et al.
        Non-canonical inflammasome activation targets caspase-11.
        Nature. 2011; 479: 117-121
        • Kayagaki N.
        • Stowe I.B.
        • Lee B.L.
        • O’Rourke K.
        • Anderson K.
        • Warming S.
        • et al.
        Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling.
        Nature. 2015; 526: 666-671
        • Shi J.
        • Zhao Y.
        • Wang K.
        • Shi X.
        • Wang Y.
        • Huang H.
        • et al.
        Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death.
        Nature. 2015; 526: 660-665
        • Yang J.R.
        • Yao F.H.
        • Zhang J.G.
        • Ji Z.Y.
        • Li K.L.
        • Zhan J.
        • et al.
        Ischemia-reperfusion induces renal tubule pyroptosis via the CHOP-caspase-11 pathway.
        Am J Physiol Renal Physiol. 2014; 306: F75-F84
        • Vanden Berghe T.
        • Linkermann A.
        • Jouan-Lanhouet S.
        • Walczak H.
        • Vandenabeele P.
        Regulated necrosis: the expanding network of non-apoptotic cell death pathways.
        Nat Rev Mol Cell Biol. 2014; 15: 135-147
        • Alam M.R.
        • Baetz D.
        • Ovize M.
        Cyclophilin D and myocardial ischemia-reperfusion injury: a fresh perspective.
        J Mol Cell Cardiol. 2015; 78: 80-89
        • Elrod J.W.
        • Molkentin J.D.
        Physiologic functions of cyclophilin D and the mitochondrial permeability transition pore.
        Circ J. 2013; 77: 1111-1122
        • Devalaraja-Narashimha K.
        • Diener A.M.
        • Padanilam B.J.
        Cyclophilin D gene ablation protects mice from ischemic renal injury.
        Am J Physiol Renal Physiol. 2009; 297: F749-F759
        • Yang W.S.
        • Stockwell B.R.
        Ferroptosis: death by lipid peroxidation.
        Trends Cell Biol. 2016; 26: 165-176
        • Linkermann A.
        • Chen G.
        • Dong G.
        • Kunzendorf U.
        • Krautwald S.
        • Dong Z.
        Regulated cell death in AKI.
        J Am Soc Nephrol. 2014; 25: 2689-2701
        • Nowak G.
        • Soundararajan S.
        • Mestril R.
        Protein kinase C-alpha interaction with iHSP70 in mitochondria promotes recovery of mitochondrial function after injury in renal proximal tubular cells.
        Am J Physiol Renal Physiol. 2013; 305: F764-F776
        • David K.K.
        • Andrabi S.A.
        • Dawson T.M.
        • Dawson V.L.
        Parthanatos, a messenger of death.
        Front Biosci. 2009; 14: 1116-1128
        • Andrabi S.A.
        • Dawson T.M.
        • Dawson V.L.
        Mitochondrial and nuclear cross talk in cell death: parthanatos.
        Ann N Y Acad Sci. 2008; 1147: 233-241
        • Kim J.
        • Padanilam B.J.
        Loss of poly(ADP-ribose) polymerase 1 attenuates renal fibrosis and inflammation during unilateral ureteral obstruction.
        Am J Physiol Renal Physiol. 2011; 301: F450-F459
        • Mukhopadhyay P.
        • Horvath B.
        • Kechrid M.
        • Tanchian G.
        • Rajesh M.
        • Naura A.S.
        • et al.
        Poly(ADP-ribose) polymerase-1 is a key mediator of cisplatin-induced kidney inflammation and injury.
        Free Radic Biol Med. 2011; 51: 1774-1788
        • Kim J.
        • Long K.E.
        • Tang K.
        • Padanilam B.J.
        Poly(ADP-ribose) polymerase 1 activation is required for cisplatin nephrotoxicity.
        Kidney Int. 2012; 82: 193-203
        • Kriz W.
        • Gretz N.
        • Lemley K.V.
        Progression of glomerular diseases: is the podocyte the culprit?.
        Kidney Int. 1998; 54: 687-697
        • Reiser J.
        • Sever S.
        Podocyte biology and pathogenesis of kidney disease.
        Annu Rev Med. 2013; 64: 357-366
        • Tharaux P.L.
        • Huber T.B.
        How many ways can a podocyte die?.
        Semin Nephrol. 2012; 32: 394-404
        • Molitoris B.A.
        • Okusa M.D.
        • Palevsky P.M.
        • Kimmel P.L.
        • Star R.A.
        Designing clinical trials in acute kidney injury.
        Clin J Am Soc Nephrol. 2012; 7: 842-843
        • Radhakrishnan J.
        • Cattran D.C.
        The KDIGO practice guideline on glomerulonephritis: reading between the (guide)lines--application to the individual patient.
        Kidney Int. 2012; 82: 840-856
        • Zarbock A.
        • Schmidt C.
        • Van Aken H.
        • Wempe C.
        • Martens S.
        • Zahn P.K.
        • et al.
        Effect of remote ischemic preconditioning on kidney injury among high-risk patients undergoing cardiac surgery: a randomized clinical trial.
        JAMA. 2015; 313: 2133-2141
        • Hausenloy D.J.
        • Yellon D.M.
        Targeting myocardial reperfusion injury--the search continues.
        N Engl J Med. 2015; 373: 1073-1075
        • Okusa M.D.
        • Molitoris B.A.
        • Palevsky P.M.
        • Chinchilli V.M.
        • Liu K.D.
        • Cheung A.K.
        • et al.
        Design of clinical trials in acute kidney injury: a report from an NIDDK workshop--prevention trials.
        Clin J Am Soc Nephrol. 2012; 7: 851-855
        • Pickkers P.
        • Heemskerk S.
        • Schouten J.
        • Laterre P.F.
        • Vincent J.L.
        • Beishuizen A.
        • et al.
        Alkaline phosphatase for treatment of sepsis-induced acute kidney injury: a prospective randomized double-blind placebo-controlled trial.
        Crit Care. 2012; 16: R14
        • Irish W.D.
        • Ilsley J.N.
        • Schnitzler M.A.
        • Feng S.
        • Brennan D.C.
        A risk prediction model for delayed graft function in the current era of deceased donor renal transplantation.
        Am J Transplant. 2010; 10: 2279-2286
        • Chen C.C.
        • Chapman W.C.
        • Hanto D.W.
        Ischemia-reperfusion injury in kidney transplantation.
        Front Biosci (Elite Ed). 2015; 7: 117-134
        • Salvadori M.
        • Rosso G.
        • Bertoni E.
        Update on ischemia-reperfusion injury in kidney transplantation: pathogenesis and treatment.
        World J Transplant. 2015; 5: 52-67
        • Newton K RIPK1
        and RIPK3: critical regulators of inflammation and cell death.
        Trends Cell Biol. 2015; 25: 347-353
        • Mandal P.
        • Berger S.B.
        • Pillay S.
        • Moriwaki K.
        • Huang C.
        • Guo H.
        • et al.
        RIP3 induces apoptosis independent of pronecrotic kinase activity.
        Mol Cell. 2014; 56: 481-495
        • Czabotar P.E.
        • Murphy J.M.
        A tale of two domains - a structural perspective of the pseudokinase, MLKL.
        FEBS J. 2015; 282: 4268-4278
        • Hildebrand J.M.
        • Tanzer M.C.
        • Lucet I.S.
        • Young S.N.
        • Spall S.K.
        • Sharma P.
        • et al.
        Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death.
        Proc Natl Acad Sci U S A. 2014; 111: 15072-15077
        • Berger S.B.
        • Kasparcova V.
        • Hoffman S.
        • Swift B.
        • Dare L.
        • Schaeffer M.
        • et al.
        Cutting edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice.
        J Immunol. 2014; 192: 5476-5480
        • Degterev A.
        • Maki J.L.
        • Yuan J.
        Activity and specificity of necrostatin-1, small-molecule inhibitor of RIP1 kinase.
        Cell Death Differ. 2013; 20: 366
        • Berger S.B.
        • Bertin J.
        • Gough P.J.
        Drilling into RIP1 biology: what compounds are in your toolkit?.
        Cell Death Dis. 2015; 6: e1889
        • Harris P.A.
        • Bandyopadhyay D.
        • Berger S.B.
        • Campobasso N.
        • Capriotti C.A.
        • Cox J.A.
        • et al.
        Discovery of small molecule RIP1 kinase inhibitors for the treatment of pathologies associated with necroptosis.
        ACS Med Chem Lett. 2013; 4: 1238-1243
        • Linkermann A.
        • Skouta R.
        • Himmerkus N.
        • Mulay S.R.
        • Dewitz C.
        • De Zen F.
        • et al.
        Synchronized renal tubular cell death involves ferroptosis.
        Proc Natl Acad Sci U S A. 2014; 111: 16836-16841
        • Skouta R.
        • Dixon S.J.
        • Wang J.
        • Dunn D.E.
        • Orman M.
        • Shimada K.
        • et al.
        Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models.
        J Am Chem Soc. 2014; 136: 4551-4556
        • Lee J.
        • Kim S.S.
        An overview of cyclophilins in human cancers.
        J Int Med Res. 2010; 38: 1561-1574
        • Naoumov N.V.
        Cyclophilin inhibition as potential therapy for liver diseases.
        J Hepatol. 2014; 61: 1166-1174
        • Kroller-Schon S.
        • Steven S.
        • Kossmann S.
        • Scholz A.
        • Daub S.
        • Oelze M.
        • et al.
        Molecular mechanisms of the crosstalk between mitochondria and NADPH oxidase through reactive oxygen species-studies in white blood cells and in animal models.
        Antioxid Redox Signal. 2014; 20: 247-266
        • Martinez-Bosch N.
        • Fernandez-Zapico M.E.
        • Navarro P.
        • Yelamos J.
        Poly(ADP-ribose) polymerases: new players in the pathogenesis of exocrine pancreatic diseases.
        Am J Pathol. 2016; 186: 234-241