Advertisement

How Kidney Cell Death Induces Renal Necroinflammation

      Summary

      The nephrons of the kidney are independent functional units harboring cells of a low turnover during homeostasis. As such, physiological renal cell death is a rather rare event and dead cells are flushed away rapidly with the urinary flow. Renal cell necrosis occurs in acute kidney injuries such as thrombotic microangiopathies, necrotizing glomerulonephritis, or tubular necrosis. All of these are associated with intense intrarenal inflammation, which contributes to further renal cell loss, an autoamplifying process referred to as necroinflammation. But how does renal cell necrosis trigger inflammation? Here, we discuss the role of danger-associated molecular patterns (DAMPs), mitochondrial (mito)-DAMPs, and alarmins, as well as their respective pattern recognition receptors. The capacity of DAMPs and alarmins to trigger cytokine and chemokine release initiates the recruitment of leukocytes into the kidney that further amplify necroinflammation. Infiltrating neutrophils often undergo neutrophil extracellular trap formation associated with neutrophil death or necroptosis, which implies a release of histones, which act not only as DAMPs but also elicit direct cytotoxic effects on renal cells, namely endothelial cells. Proinflammatory macrophages and eventually cytotoxic T cells further drive kidney cell death and inflammation. Dissecting the molecular mechanisms of necroinflammation may help to identify the best therapeutic targets to limit nephron loss in kidney injury.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Nephrology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Adams F.
        The genuine works of Hippocrates. London, UK: Sydenham.
        Society. 1771;
        • Kushner I.
        The acute phase response: from hippocrates to cytokine biology.
        Eur Cytokine Netw. 1991; 2: 75-80
        • Rocha e
        • Silva M.
        A brief survey of the history of inflammation. 1978.
        Agents Actions. 1994; 43: 86-90
        • Cohnheim J.F.
        Ueber entzündung und eiterung.
        Virch Arch Pathol Anat. 1867; 40: 1-79
        • Virchow R.
        Cellular pathology as based upon physiological and pathological histology. Twenty lectures delivered in the Pathological Institute of Berlin during the months of February, March and April 1858.
        Berlin, Germany: RM DeWitt. 1860;
        • Leavy O.
        Regulatory T cells: distinct role in tissue repair.
        Nat Rev Immunol. 2015; 15: 596-597
        • Lund F.E.
        • Randall T.D.
        Effector and regulatory B cells: modulators of CD4+ T cell immunity.
        Nat Rev Immunol. 2010; 10: 236-247
        • Lavin Y.
        • Mortha A.
        • Rahman A.
        • Merad M.
        Regulation of macrophage development and function in peripheral tissues.
        Nat Rev Immunol. 2015; 15: 731-744
        • Buckley C.D.
        • Gilroy D.W.
        • Serhan C.N.
        • Stockinger B.
        • Tak P.P.
        The resolution of inflammation.
        Nat Rev Immunol. 2013; 13: 59-66
        • Martinez F.O.
        • Helming L.
        • Gordon S.
        Alternative activation of macrophages: an immunologic functional perspective.
        Annu Rev Immunol. 2009; 27: 451-483
        • Serhan C.N.
        Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways.
        Annu Rev Immunol. 2007; 25: 101-137
        • Mulay S.R.
        • Linkermann A.
        • Anders H.J.
        Necroinflammation in kidney disease.
        J Am Soc Nephrol. 2016; 27: 27-39
        • Patole P.S.
        • Pawar R.D.
        • Lichtnekert J.
        • Lech M.
        • Kulkarni O.P.
        • Ramanjaneyulu A.
        • et al.
        Coactivation of Toll-like receptor-3 and -7 in immune complex glomerulonephritis.
        J Autoimmun. 2007; 29: 52-59
        • Allam R.
        • Anders H.J.
        The role of innate immunity in autoimmune tissue injury.
        Curr Opin Rheumatol. 2008; 20: 538-544
        • Kurts C.
        • Panzer U.
        • Anders H.J.
        • Rees A.J.
        The immune system and kidney disease: basic concepts and clinical implications.
        Nat Rev Immunol. 2013; 13: 738-753
        • Rauen T.
        • Eitner F.
        • Fitzner C.
        • Sommerer C.
        • Zeier M.
        • Otte B.
        • et al.
        Intensive supportive care plus immunosuppression in IgA nephropathy.
        N Engl J Med. 2015; 373: 2225-2236
        • Lech M.
        • Anders H.J.
        Macrophages and fibrosis: how resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair.
        Biochim Biophys Acta. 2013; 1832: 989-997
        • Nichols S.A.
        • Dirks W.
        • Pearse J.S.
        • King N.
        Early evolution of animal cell signaling and adhesion genes.
        Proc Natl Acad Sci U S A. 2006; 103: 12451-12456
        • Anders H.J.
        Four danger response programs determine glomerular and tubulointerstitial kidney pathology: clotting, inflammation, epithelial and mesenchymal healing.
        Organogenesis. 2012; 8: 29-40
        • Gurtner G.C.
        • Werner S.
        • Barrandon Y.
        • Longaker M.T.
        Wound repair and regeneration.
        Nature. 2008; 453: 314-321
        • Hagemann J.H.
        • Haegele H.
        • Muller S.
        • Anders H.J.
        Danger control programs cause tissue injury and remodeling.
        Int J Mol Sci. 2013; 14: 11319-11346
        • Poltorak A.
        • He X.
        • Smirnova I.
        • Liu M.Y.
        • Van Huffel C.
        • Du X.
        • et al.
        Defective lps signaling in c3h/hej and c57bl/10sccr mice: mutations in tlr4 gene.
        Science. 1998; 282: 2085-2088
        • Aliprantis A.O.
        • Yang R.B.
        • Mark M.R.
        • Suggett S.
        • Devaux B.
        • Radolf J.D.
        • et al.
        Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2.
        Science. 1999; 285: 736-739
        • Akira S.
        • Uematsu S.
        • Takeuchi O.
        Pathogen recognition and innate immunity.
        Cell. 2006; 124: 783-801
        • Kepp O.
        • Senovilla L.
        • Vitale I.
        • Vacchelli E.
        • Adjemian S.
        • Agostinis P.
        • et al.
        Consensus guidelines for the detection of immunogenic cell death.
        Oncoimmunology. 2014; 3: e955691
        • Krysko D.V.
        • Agostinis P.
        • Krysko O.
        • Garg A.D.
        • Bachert C.
        • Lambrecht B.N.
        • et al.
        Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation.
        Trends Immunol. 2011; 32: 157-164
        • Zhang Q.
        • Raoof M.
        • Chen Y.
        • Sumi Y.
        • Sursal T.
        • Junger W.
        • et al.
        Circulating mitochondrial damps cause inflammatory responses to injury.
        Nature. 2010; 464: 104-107
        • He J.
        • Lu Y.
        • Xia H.
        • Liang Y.
        • Wang X.
        • Bao W.
        • et al.
        Circulating mitochondrial DAMPs are not effective inducers of proteinuria and kidney injury in rodents.
        PLoS One. 2015; 10: e0124469
        • McCarthy C.G.
        • Wenceslau C.F.
        • Goulopoulou S.
        • Ogbi S.
        • Baban B.
        • Sullivan J.C.
        • et al.
        Circulating mitochondrial DNA and Toll-like receptor 9 are associated with vascular dysfunction in spontaneously hypertensive rats.
        Cardiovasc Res. 2015; 107: 119-130
        • Chan J.K.
        • Roth J.
        • Oppenheim J.J.
        • Tracey K.J.
        • Vogl T.
        • Feldmann M.
        • et al.
        Alarmins: awaiting a clinical response.
        J Clin Invest. 2012; 122: 2711-2719
        • Yasuda K.
        • Muto T.
        • Kawagoe T.
        • Matsumoto M.
        • Sasaki Y.
        • Matsushita K.
        • et al.
        Contribution of IL-33-activated type II innate lymphoid cells to pulmonary eosinophilia in intestinal nematode-infected mice.
        Proc Natl Acad Sci U S A. 2012; 109: 3451-3456
        • Akcay A.
        • Nguyen Q.
        • He Z.
        • Turkmen K.
        • Won Lee D.
        • Hernando A.A.
        • et al.
        Il-33 exacerbates acute kidney injury.
        J Am Soc Nephrol. 2011; 22: 2057-2067
        • Desai J.
        • Vr S.K.
        • Mulay S.R.
        • Konrad L.
        • Romoli S.
        • Schauer C.
        • et al.
        Neutrophil extracellular trap formation can involve RIPK1-RIPK3-MLKL signalling.
        Eur J Immunol. 2016; 46: 223-229
        • Brinkmann V.
        • Reichard U.
        • Goosmann C.
        • Fauler B.
        • Uhlemann Y.
        • Weiss D.S.
        • et al.
        Neutrophil extracellular traps kill bacteria.
        Science. 2004; 303: 1532-1535
        • Rohrbach A.S.
        • Slade D.J.
        • Thompson P.R.
        • Mowen K.A.
        Activation of pad4 in net formation.
        Front Immunol. 2012; 3: 360
        • Gould T.J.
        • Lysov Z.
        • Liaw P.C.
        Extracellular DNA and histones: double-edged swords in immunothrombosis.
        J Thromb Haemost. 2015; 13: S82-S91
        • Schauer C.
        • Janko C.
        • Munoz L.E.
        • Zhao Y.
        • Kienhofer D.
        • Frey B.
        • et al.
        Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines.
        Nat Med. 2014; 20: 511-517
        • Case C.L.
        • Kohler L.J.
        • Lima J.B.
        • Strowig T.
        • de Zoete M.R.
        • Flavell R.A.
        • et al.
        Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to legionella pneumophila.
        Proc Natl Acad Sci U S A. 2013; 110: 1851-1856
        • de Gassart A.
        • Martinon F.
        Pyroptosis: caspase-11 unlocks the gates of death.
        Immunity. 2015; 43: 835-837
        • Shi J.
        • Zhao Y.
        • Wang K.
        • Shi X.
        • Wang Y.
        • Huang H.
        • et al.
        Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death.
        Nature. 2015; 526: 660-665
        • Franklin B.S.
        • Bossaller L.
        • De Nardo D.
        • Ratter J.M.
        • Stutz A.
        • Engels G.
        • et al.
        The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation.
        Nat Immunol. 2014; 15: 727-737
        • Anders H.J.
        Toll-like receptors and danger signaling in kidney injury.
        J Am Soc Nephrol. 2010; 21: 1270-1274
        • Anders H.J.
        • Muruve D.A.
        The inflammasomes in kidney disease.
        J Am Soc Nephrol. 2011; 22: 1007-1018
        • Kawai T.
        • Akira S.
        The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors.
        Nat Immunol. 2010; 11: 373-384
        • Rathinam V.A.
        • Vanaja S.K.
        • Fitzgerald K.A.
        Regulation of inflammasome signaling.
        Nat Immunol. 2012; 13: 333-342
        • Lee C.C.
        • Avalos A.M.
        • Ploegh H.L.
        Accessory molecules for Toll-like receptors and their function.
        Nat Rev Immunol. 2012; 12: 168-179
        • Blasius A.L.
        • Beutler B.
        Intracellular Toll-like receptors.
        Immunity. 2010; 32: 305-315
        • Ablasser A.
        • Hertrich C.
        • Wassermann R.
        • Hornung V.
        Nucleic acid driven sterile inflammation.
        Clin Immunol. 2013; 147: 207-215
        • Goubau D.
        • Deddouche S.
        • Reis e Sousa C.
        Cytosolic sensing of viruses.
        Immunity. 2013; 38: 855-869
        • Burckstummer T.
        • Baumann C.
        • Bluml S.
        • Dixit E.
        • Durnberger G.
        • Jahn H.
        • et al.
        An orthogonal proteomic-genomic screen identifies aim2 as a cytoplasmic DNA sensor for the inflammasome.
        Nat Immunol. 2009; 10: 266-272
        • Fernandes-Alnemri T.
        • Yu J.W.
        • Datta P.
        • Wu J.
        • Alnemri E.S.
        Aim2 activates the inflammasome and cell death in response to cytoplasmic DNA.
        Nature. 2009; 458: 509-513
        • Hornung V.
        • Ablasser A.
        • Charrel-Dennis M.
        • Bauernfeind F.
        • Horvath G.
        • Caffrey D.R.
        • et al.
        AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC.
        Nature. 2009; 458: 514-518
        • Unterholzner L.
        • Keating S.E.
        • Baran M.
        • Horan K.A.
        • Jensen S.B.
        • Sharma S.
        • et al.
        IFI16 is an innate immune sensor for intracellular DNA.
        Nat Immunol. 2010; 11: 997-1004
        • Sun L.
        • Wu J.
        • Du F.
        • Chen X.
        • Chen Z.J.
        Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type i interferon pathway.
        Science. 2013; 339: 786-791
        • Ablasser A.
        • Goldeck M.
        • Cavlar T.
        • Deimling T.
        • Witte G.
        • Rohl I.
        • et al.
        cGAS produces a 2’-5’-linked cyclic dinucleotide second messenger that activates STING.
        Nature. 2013; 498: 380-384
        • Civril F.
        • Deimling T.
        • de Oliveira Mann C.C.
        • Ablasser A.
        • Moldt M.
        • Witte G.
        • et al.
        Structural mechanism of cytosolic DNA sensing by cGAS.
        Nature. 2013; 498: 332-337
        • Ishikawa H.
        • Barber G.N.
        STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling.
        Nature. 2008; 455: 674-678
        • Zhang Z.
        • Yuan B.
        • Bao M.
        • Lu N.
        • Kim T.
        • Liu Y.J.
        The helicase ddx41 senses intracellular DNA mediated by the adaptor sting in dendritic cells.
        Nat Immunol. 2011; 12: 959-965
        • Martinon F.
        • Petrilli V.
        • Mayor A.
        • Tardivel A.
        • Tschopp J.
        Gout-associated uric acid crystals activate the NALP3 inflammasome.
        Nature. 2006; 440: 237-241
        • Schroder K.
        • Tschopp J.
        The inflammasomes.
        Cell. 2010; 140: 821-832
        • Kayagaki N.
        • Warming S.
        • Lamkanfi M.
        • Vande Walle L.
        • Louie S.
        • Dong J.
        • et al.
        Non-canonical inflammasome activation targets caspase-11.
        Nature. 2011; 479: 117-121
        • Kayagaki N.
        • Stowe I.B.
        • Lee B.L.
        • O’Rourke K.
        • Anderson K.
        • Warming S.
        • et al.
        Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling.
        Nature. 2015; 526: 666-671
        • Lech M.
        • Susanti H.E.
        • Rommele C.
        • Grobmayr R.
        • Gunthner R.
        • Anders H.J.
        Quantitative expression of C-type lectin receptors in humans and mice.
        Int J Mol Sci. 2012; 13: 10113-10131
        • Sancho D.
        • Reis e Sousa C.
        Signaling by myeloid C-type lectin receptors in immunity and homeostasis.
        Annu Rev Immunol. 2012; 30: 491-529
        • Ley K.
        • Kansas G.S.
        Selectins in T-cell recruitment to non-lymphoid tissues and sites of inflammation.
        Nat Rev Immunol. 2004; 4: 325-335
        • East L.
        • Isacke C.M.
        The mannose receptor family.
        Biochim Biophys Acta. 2002; 1572: 364-386
        • Geijtenbeek T.B.
        • Torensma R.
        • van Vliet S.J.
        • van Duijnhoven G.C.
        • Adema G.J.
        • van Kooyk Y.
        • et al.
        Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses.
        Cell. 2000; 100: 575-585
        • Lu J.
        • Teh C.
        • Kishore U.
        • Reid K.B.
        Collectins and ficolins: sugar pattern recognition molecules of the mammalian innate immune system.
        Biochim Biophys Acta. 2002; 1572: 387-400
        • Neumann K.
        • Castineiras-Vilarino M.
        • Hockendorf U.
        • Hannesschlager N.
        • Lemeer S.
        • Kupka D.
        • et al.
        Clec12a is an inhibitory receptor for uric acid crystals that regulates inflammation in response to cell death.
        Immunity. 2014; 40: 389-399
        • Lassen S.
        • Lech M.
        • Rommele C.
        • Mittruecker H.W.
        • Mak T.W.
        • Anders H.J.
        Ischemia reperfusion induces IFN regulatory factor 4 in renal dendritic cells, which suppresses postischemic inflammation and prevents acute renal failure.
        J Immunol. 2010; 185: 1976-1983
        • Lech M.
        • Avila-Ferrufino A.
        • Allam R.
        • Segerer S.
        • Khandoga A.
        • Krombach F.
        • et al.
        Resident dendritic cells prevent postischemic acute renal failure by help of single IG IL-1 receptor-related protein.
        J Immunol. 2009; 183: 4109-4118
        • Lech M.
        • Avila-Ferrufino A.
        • Skuginna V.
        • Susanti H.E.
        • Anders H.J.
        Quantitative expression of RIG-like helicase, NOD-like receptor and inflammasome-related mRNAs in humans and mice.
        Int Immunol. 2010; 22: 717-728
        • Lech M.
        • Garlanda C.
        • Mantovani A.
        • Kirschning C.J.
        • Schlondorff D.
        • Anders H.J.
        Different roles of TiR8/Sigirr on Toll-like receptor signaling in intrarenal antigen-presenting cells and tubular epithelial cells.
        Kidney Int. 2007; 72: 182-192
        • Lech M.
        • Grobmayr R.
        • Ryu M.
        • Lorenz G.
        • Hartter I.
        • Mulay S.R.
        • et al.
        Macrophage phenotype controls long-term AKI outcomes--kidney regeneration versus atrophy.
        J Am Soc Nephrol. 2014; 25: 292-304
        • Lech M.
        • Rommele C.
        • Grobmayr R.
        • Eka Susanti H.
        • Kulkarni O.P.
        • Wang S.
        • et al.
        Endogenous and exogenous pentraxin-3 limits postischemic acute and chronic kidney injury.
        Kidney Int. 2013; 83: 647-661
        • Lech M.
        • Skuginna V.
        • Kulkarni O.P.
        • Gong J.
        • Wei T.
        • Stark R.W.
        • et al.
        Lack of Sigirr/TiR8 aggravates hydrocarbon oil-induced lupus nephritis.
        J Pathol. 2010; 220: 596-607
        • Skuginna V.
        • Lech M.
        • Allam R.
        • Ryu M.
        • Clauss S.
        • Susanti H.E.
        • et al.
        Toll-like receptor signaling and Sigirr in renal fibrosis upon unilateral ureteral obstruction.
        PLoS One. 2011; 6: e19204
        • Felsenfeld G.
        • Groudine M.
        Controlling the double helix.
        Nature. 2003; 421: 448-453
        • Mathis D.J.
        • Oudet P.
        • Wasylyk B.
        • Chambon P.
        Effect of histone acetylation on structure and in vitro transcription of chromatin.
        Nucleic Acids Res. 1978; 5: 3523-3547
        • Allam R.
        • Darisipudi M.N.
        • Tschopp J.
        • Anders H.J.
        Histones trigger sterile inflammation by activating the NLRP3 inflammasome.
        Eur J Immunol. 2013; 43: 3336-3342
        • Allam R.
        • Scherbaum C.R.
        • Darisipudi M.N.
        • Mulay S.R.
        • Hagele H.
        • Lichtnekert J.
        • et al.
        Histones from dying renal cells aggravate kidney injury via TLR2 and TLR4.
        J Am Soc Nephrol. 2012; 23: 1375-1388
        • Bosmann M.
        • Grailer J.J.
        • Ruemmler R.
        • Russkamp N.F.
        • Zetoune F.S.
        • Sarma J.V.
        • et al.
        Extracellular histones are essential effectors of C5aR- and C5L2-mediated tissue damage and inflammation in acute lung injury.
        FASEB J. 2013; 27: 5010-5021
        • Huang H.
        • Evankovich J.
        • Yan W.
        • Nace G.
        • Zhang L.
        • Ross M.
        • et al.
        Endogenous histones function as alarmins in sterile inflammatory liver injury through Toll-like receptor 9 in mice.
        Hepatology. 2011; 54: 999-1008
        • Kumar S.V.
        • Kulkarni O.P.
        • Mulay S.R.
        • Darisipudi M.N.
        • Romoli S.
        • Thomasova D.
        • et al.
        Neutrophil extracellular TRAP-related extracellular histones cause vascular necrosis in severe GN.
        J Am Soc Nephrol. 2015; 26: 2399-2413
        • Xu J.
        • Zhang X.
        • Pelayo R.
        • Monestier M.
        • Ammollo C.T.
        • Semeraro F.
        • et al.
        Extracellular histones are major mediators of death in sepsis.
        Nat Med. 2009; 15: 1318-1321
        • Gillrie M.R.
        • Lee K.
        • Gowda D.C.
        • Davis S.P.
        • Monestier M.
        • Cui L.
        • et al.
        Plasmodium falciparum histones induce endothelial proinflammatory response and barrier dysfunction.
        Am J Pathol. 2012; 180: 1028-1039
        • Ginsburg I.
        • Gibbs D.F.
        • Schuger L.
        • Johnson K.J.
        • Ryan U.S.
        • Ward P.A.
        • et al.
        Vascular endothelial cell killing by combinations of membrane-active agents and hydrogen peroxide.
        Free Radic Biol Med. 1989; 7: 369-376
        • Shapiro D.N.
        • Varani J.
        • Ginsburg I.
        Activation of a murine T-cell hybridoma by cationized bacteria.
        Immunology. 1989; 67: 478-483
        • Abrams S.T.
        • Zhang N.
        • Manson J.
        • Liu T.
        • Dart C.
        • Baluwa F.
        • et al.
        Circulating histones are mediators of trauma-associated lung injury.
        Am J Respir Crit Care Med. 2013; 187: 160-169
        • De Meyer S.F.
        • Suidan G.L.
        • Fuchs T.A.
        • Monestier M.
        • Wagner D.D.
        Extracellular chromatin is an important mediator of ischemic stroke in mice.
        Arterioscler Thromb Vasc Biol. 2012; 32: 1884-1891
        • Ou X.
        • Cheng Z.
        • Liu T.
        • Tang Z.
        • Huang W.
        • Szatmary P.
        • et al.
        Circulating histone levels reflect disease severity in animal models of acute pancreatitis.
        Pancreas. 2015; 44: 1089-1095
        • Wen Z.
        • Liu Y.
        • Li F.
        • Ren F.
        • Chen D.
        • Li X.
        • et al.
        Circulating histones exacerbate inflammation in mice with acute liver failure.
        J Cell Biochem. 2013; 114: 2384-2391
        • Carestia A.
        • Rivadeneyra L.
        • Romaniuk M.A.
        • Fondevila C.
        • Negrotto S.
        • Schattner M.
        Functional responses and molecular mechanisms involved in histone-mediated platelet activation.
        Thromb Haemost. 2013; 110: 1035-1045
        • Semeraro F.
        • Ammollo C.T.
        • Morrissey J.H.
        • Dale G.L.
        • Friese P.
        • Esmon N.L.
        • et al.
        Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4.
        Blood. 2011; 118: 1952-1961
        • Linkermann A.
        • Stockwell B.R.
        • Krautwald S.
        • Anders H.J.
        Regulated cell death and inflammation: an auto-amplification loop causes organ failure.
        Nat Rev Immunol. 2014; 14: 759-767
        • Neogi T.
        Clinical practice. Gout.
        N Engl J Med. 2011; 364: 443-452
        • Allam R.
        • Kumar S.V.
        • Darisipudi M.N.
        • Anders H.J.
        Extracellular histones in tissue injury and inflammation.
        J Mol Med (Berl). 2014; 92: 465-472
        • Vanden Berghe T.
        • Linkermann A.
        • Jouan-Lanhouet S.
        • Walczak H.
        • Vandenabeele P.
        Regulated necrosis: the expanding network of non-apoptotic cell death pathways.
        Nat Rev Mol Cell Biol. 2014; 15: 135-147
        • Linkermann A.
        • Brasen J.H.
        • Darding M.
        • Jin M.K.
        • Sanz A.B.
        • Heller J.O.
        • et al.
        Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury.
        Proc Natl Acad Sci U S A. 2013; 110: 12024-12029
        • Linkermann A.
        • Brasen J.H.
        • Himmerkus N.
        • Liu S.
        • Huber T.B.
        • Kunzendorf U.
        • et al.
        Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury.
        Kidney Int. 2012; 81: 751-761
        • Xu Y.
        • Ma H.
        • Shao J.
        • Wu J.
        • Zhou L.
        • Zhang Z.
        • et al.
        A role for tubular necroptosis in cisplatin-induced AKI.
        J Am Soc Nephrol. 2015; 26: 2647-2658
        • Mulay S.R.
        • Desay J.
        • Kumar S.V.R.
        • Eberhard J.N.
        • Thomasova D.
        • Romoli S.
        • et al.
        Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis.
        Nat Commun. 2016; 7: 10274
        • Rickard J.A.
        • O’Donnell J.A.
        • Evans J.M.
        • Lalaoui N.
        • Poh A.R.
        • Rogers T.
        • et al.
        RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis.
        Cell. 2014; 157: 1175-1188
        • Linkermann A.
        • Chen G.
        • Dong G.
        • Kunzendorf U.
        • Krautwald S.
        • Dong Z.
        Regulated cell death in AKI.
        J Am Soc Nephrol. 2014; 25: 2689-2701
        • Kessenbrock K.
        • Krumbholz M.
        • Schonermarck U.
        • Back W.
        • Gross W.L.
        • Werb Z.
        • et al.
        Netting neutrophils in autoimmune small-vessel vasculitis.
        Nat Med. 2009; 15: 623-625
        • Nakazawa D.
        • Shida H.
        • Tomaru U.
        • Yoshida M.
        • Nishio S.
        • Atsumi T.
        • et al.
        Enhanced formation and disordered regulation of nets in myeloperoxidase-ANCA-associated microscopic polyangiitis.
        J Am Soc Nephrol. 2014; 25: 990-997
        • Friedmann Angeli J.P.
        • Schneider M.
        • Proneth B.
        • Tyurina Y.Y.
        • Tyurin V.A.
        • Hammond V.J.
        • et al.
        Inactivation of the ferroptosis regulator GPX4 triggers acute renal failure in mice.
        Nat Cell Biol. 2014; 16: 1180-1191
        • Linkermann A.
        • Skouta R.
        • Himmerkus N.
        • Mulay S.R.
        • Dewitz C.
        • De Zen F.
        • et al.
        Synchronized renal tubular cell death involves ferroptosis.
        Proc Natl Acad Sci U S A. 2014; 111: 16836-16841
        • Yang J.R.
        • Yao F.H.
        • Zhang J.G.
        • Ji Z.Y.
        • Li K.L.
        • Zhan J.
        • et al.
        Ischemia-reperfusion induces renal tubule pyroptosis via the CHOP-caspase-11 pathway.
        Am J Physiol Renal Physiol. 2014; 306: F75-F84
        • Krautwald S.
        • Linkermann A.
        The fire within: pyroptosis in the kidney.
        Am J Physiol Renal Physiol. 2014; 306: F168-F169
        • Thomasova D.
        • Bruns H.A.
        • Kretschmer V.
        • Ebrahim M.
        • Romoli S.
        • Liapis H.
        • et al.
        Murine double minute-2 prevents p53-overactivation-related cell death (podoptosis) of podocytes.
        J Am Soc Nephrol. 2015; 26: 1513-1523
        • Ebrahim M.
        • Mulay S.R.
        • Anders H.J.
        • Thomasova D.
        MDM2 beyond cancer: podoptosis, development, inflammation, and tissue regeneration.
        Histol Histopathol. 2015; 30: 1271-1282
        • Mulay S.R.
        • Thomasova D.
        • Ryu M.
        • Kulkarni O.P.
        • Migliorini A.
        • Bruns H.
        • et al.
        Podocyte loss involves MDM2-driven mitotic catastrophe.
        J Pathol. 2013; 230: 322-335
        • Anders H.J.
        • Schaefer L.
        Beyond tissue injury-damage-associated molecular patterns, Toll-like receptors, and inflammasomes also drive regeneration and fibrosis.
        J Am Soc Nephrol. 2014; 25: 1387-1400
        • Iorember F.M.
        • Vehaskari V.M.
        Uromodulin: old friend with new roles in health and disease.
        Pediatr Nephrol. 2014; 29: 1151-1158
        • Darisipudi M.N.
        • Thomasova D.
        • Mulay S.R.
        • Brech D.
        • Noessner E.
        • Liapis H.
        • et al.
        Uromodulin triggers IL-1beta-dependent innate immunity via the NLRP3 inflammasome.
        J Am Soc Nephrol. 2012; 23: 1783-1789
        • Mulay S.R.
        • Kulkarni O.P.
        • Rupanagudi K.V.
        • Migliorini A.
        • Darisipudi M.N.
        • Vilaysane A.
        • et al.
        Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1beta secretion.
        J Clin Invest. 2013; 123: 236-246
        • Saemann M.D.
        • Weichhart T.
        • Zeyda M.
        • Staffler G.
        • Schunn M.
        • Stuhlmeier K.M.
        • et al.
        Tamm-Horsfall glycoprotein links innate immune cell activation with adaptive immunity via a Toll-like receptor-4-dependent mechanism.
        J Clin Invest. 2005; 115: 468-475
        • Mulay S.R.
        • Evan A.
        • Anders H.J.
        Molecular mechanisms of crystal-related kidney inflammation and injury. Implications for cholesterol embolism, crystalline nephropathies and kidney stone disease.
        Nephrol Dial Transplant. 2014; 29: 507-514
        • Knauf F.
        • Asplin J.R.
        • Granja I.
        • Schmidt I.M.
        • Moeckel G.W.
        • David R.J.
        • et al.
        NALP3-mediated inflammation is a principal cause of progressive renal failure in oxalate nephropathy.
        Kidney Int. 2013; 84: 895-901
        • Duewell P.
        • Kono H.
        • Rayner K.J.
        • Sirois C.M.
        • Vladimer G.
        • Bauernfeind F.G.
        • et al.
        NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals.
        Nature. 2010; 464: 1357-1361
        • Correa-Costa M.
        • Braga T.T.
        • Semedo P.
        • Hayashida C.Y.
        • Bechara L.R.
        • Elias R.M.
        • et al.
        Pivotal role of Toll-like receptors 2 and 4, its adaptor molecule MyD88, and inflammasome complex in experimental tubule-interstitial nephritis.
        PLoS One. 2011; 6: e29004
        • Komada T.
        • Usui F.
        • Kawashima A.
        • Kimura H.
        • Karasawa T.
        • Inoue Y.
        • et al.
        Role of NLRP3 inflammasomes for rhabdomyolysis-induced acute kidney injury.
        Sci Rep. 2015; 5: 10901
        • Smeets B.
        • Angelotti M.L.
        • Rizzo P.
        • Dijkman H.
        • Lazzeri E.
        • Mooren F.
        • et al.
        Renal progenitor cells contribute to hyperplastic lesions of podocytopathies and crescentic glomerulonephritis.
        J Am Soc Nephrol. 2009; 20: 2593-2603
        • Ryu M.
        • Migliorini A.
        • Miosge N.
        • Gross O.
        • Shankland S.
        • Brinkkoetter P.T.
        • et al.
        Plasma leakage through glomerular basement membrane ruptures triggers the proliferation of parietal epithelial cells and crescent formation in non-inflammatory glomerular injury.
        J Pathol. 2012; 228: 482-494
        • Schreiber A.
        • Xiao H.
        • Jennette J.C.
        • Schneider W.
        • Luft F.C.
        • Kettritz R.
        C5a receptor mediates neutrophil activation and ANCA-induced glomerulonephritis.
        J Am Soc Nephrol. 2009; 20: 289-298
        • Charles Jennette J.
        • Xiao H.
        • Hu P.
        Complement in ANCA-associated vasculitis.
        Semin Nephrol. 2013; 33: 557-564
        • Schreiber A.
        • Choi M.
        The role of neutrophils in causing antineutrophil cytoplasmic autoantibody-associated vasculitis.
        Curr Opin Hematol. 2015; 22: 60-66
        • Schreiber A.
        • Kettritz R.
        The neutrophil in antineutrophil cytoplasmic autoantibody-associated vasculitis.
        J Leukoc Biol. 2013; 94: 623-631
        • Lichtnekert J.
        • Vielhauer V.
        • Zecher D.
        • Kulkarni O.P.
        • Clauss S.
        • Segerer S.
        • et al.
        TRIF is not required for immune complex glomerulonephritis: dying cells activate mesangial cells via TLR2/MyD88 rather than TLR3/TRIF.
        Am J Physiol Renal Physiol. 2009; 296: F867-F874
        • Brown H.J.
        • Sacks S.H.
        • Robson M.G.
        Toll-like receptor 2 agonists exacerbate accelerated nephrotoxic nephritis.
        J Am Soc Nephrol. 2006; 17: 1931-1939
        • Lech M.
        • Lorenz G.
        • Kulkarni O.P.
        • Grosser M.O.
        • Stigrot N.
        • Darisipudi M.N.
        • et al.
        NLRP3 and ASC suppress lupus-like autoimmunity by driving the immunosuppressive effects of TGF-beta receptor signalling.
        Ann Rheum Dis. 2015; 74: 2224-2235
        • Lichtnekert J.
        • Kulkarni O.P.
        • Mulay S.R.
        • Rupanagudi K.V.
        • Ryu M.
        • Allam R.
        • et al.
        Anti-GBM glomerulonephritis involves IL-1 but is independent of NLRP3/ASC inflammasome-mediated activation of caspase-1.
        PLoS One. 2011; 6: e26778
        • George J.N.
        • Nester C.M.
        Syndromes of thrombotic microangiopathy.
        N Engl J Med. 2014; 371: 654-666
        • Cofiell R.
        • Kukreja A.
        • Bedard K.
        • Yan Y.
        • Mickle A.P.
        • Ogawa M.
        • et al.
        Eculizumab reduces complement activation, inflammation, endothelial damage, thrombosis, and renal injury markers in aHUS.
        Blood. 2015; 125: 3253-3262
        • Chaput C.
        • Zychlinsky A.
        Sepsis: the dark side of histones.
        Nat Med. 2009; 15: 1245-1246
        • Standiford T.J.
        • Ward P.A.
        Therapeutic targeting of acute lung injury and acute respiratory distress syndrome.
        Transl Res. 2016; 167: 183-191
        • Vanden Berghe T.
        • Linkermann A.
        Take my breath away: necrosis in kidney transplants kills the lungs!.
        Kidney Int. 2015; 87: 680-682
        • Zhao H.
        • Ning J.
        • Lemaire A.
        • Koumpa F.S.
        • Sun J.J.
        • Fung A.
        • et al.
        Necroptosis and parthanatos are involved in remote lung injury after receiving ischemic renal allografts in rats.
        Kidney Int. 2015; 87: 738-748
        • Thomasova D.
        • Anders H.J.
        Cell cycle control in the kidney.
        Nephrol Dial Transplant. 2015; 30: 1622-1630
        • Shigeoka A.A.
        • Holscher T.D.
        • King A.J.
        • Hall F.W.
        • Kiosses W.B.
        • Tobias P.S.
        • et al.
        TLR2 is constitutively expressed within the kidney and participates in ischemic renal injury through both MyD88-dependent and -independent pathways.
        J Immunol. 2007; 178: 6252-6258
        • Leemans J.C.
        • Stokman G.
        • Claessen N.
        • Rouschop K.M.
        • Teske G.J.
        • Kirschning C.J.
        • et al.
        Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney.
        J Clin Invest. 2005; 115: 2894-2903
        • Iyer S.S.
        • Pulskens W.P.
        • Sadler J.J.
        • Butter L.M.
        • Teske G.J.
        • Ulland T.K.
        • et al.
        Necrotic cells trigger a sterile inflammatory response through the NLRP3 inflammasome.
        Proc Natl Acad Sci U S A. 2009; 106: 20388-20393
        • Anders H.J.
        Immune system modulation of kidney regeneration--mechanisms and implications.
        Nat Rev Nephrol. 2014; 10: 347-358