Advertisement

Autophagy and Tubular Cell Death in the Kidney

  • Andrea Havasi
    Correspondence
    Address reprint requests to Andrea Havasi, Boston University Medical Center, Department of Medicine/Renal Section, EBRC bldg. Room X540, 650 Albany Street, Boston MA 02118
    Affiliations
    Department of Nephrology, Boston University Medical Center, Boston, MA
    Search for articles by this author
  • Zheng Dong
    Affiliations
    Department of Nephrology, Second Xiangya Hospital of Central South University, Changsha, China

    Department of Cellular Biology and Anatomy, Medical College of Georgia and Charlie Norwood VA Medical Center, Augusta, GA
    Search for articles by this author

      Summary

      Many common renal insults such as ischemia and toxic injury primarily target the tubular epithelial cells, especially the highly metabolically active proximal tubular segment. Tubular epithelial cells are particularly dependent on autophagy to maintain homeostasis and respond to stressors. The pattern of autophagy in the kidney has a unique spatial and chronologic signature. Recent evidence has shown that there is complex cross-talk between autophagy and various cell death pathways. This review specifically discusses the interplay between autophagy and cell death in the renal tubular epithelia. It is imperative to review this topic because recent discoveries have improved our mechanistic understanding of the autophagic process and have highlighted its broad clinical applications, making autophagy a major target for drug development.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Nephrology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • De Rechter S.
        • Decuypere J.P.
        • Ivanova E.
        • et al.
        Autophagy in renal diseases.
        Pediatr Nephrol. 2015; (Epub ahead of print)
        • Klionsky D.J.
        • Abdalla F.C.
        • Abeliovich H.
        • et al.
        Guidelines for the use and interpretation of assays for monitoring autophagy.
        Autophagy. 2012; 8: 445-544
        • Levine B.
        • Yuan J.
        Autophagy in cell death: an innocent convict?.
        J Clin Invest. 2005; 115: 2679-2688
        • Periyasamy-Thandavan S.
        • Jiang M.
        • Schoenlein P.
        • Dong Z.
        Autophagy: molecular machinery, regulation, and implications for renal pathophysiology.
        Am J Physiol Renal Physiol. 2009; 297: F244-F256
        • Ghavami S.
        • Shojaei S.
        • Yeganeh B.
        • et al.
        Autophagy and apoptosis dysfunction in neurodegenerative disorders.
        Prog Neurobiol. 2014; 112: 24-49
        • Hartleben B.
        • Wanner N.
        • Huber T.B.
        Autophagy in glomerular health and disease.
        Semin Nephrol. 2014; 34: 42-52
        • Huber T.B.
        • Edelstein C.L.
        • Hartleben B.
        • et al.
        Emerging role of autophagy in kidney function, diseases and aging.
        Autophagy. 2012; 8: 1009-1031
        • Fougeray S.
        • Pallet N.
        Mechanisms and biological functions of autophagy in diseased and ageing kidneys.
        Nat Rev Nephrol. 2015; 11: 34-45
        • Goligorsky M.S.
        SIRTing out the link between autophagy and ageing.
        Nephrol Dial Transplant. 2010; 25: 2434-2436
        • Mizushima N.
        • Levine B.
        Autophagy in mammalian development and differentiation.
        Nat Cell Biol. 2010; 12: 823-830
        • Takabatake Y.
        • Kimura T.
        • Takahashi A.
        • Isaka Y.
        Autophagy and the kidney: health and disease.
        Nephrol Dial Transplant. 2014; 29: 1639-1647
        • Aki T.
        • Funakoshi T.
        • Unuma K.
        • Uemura K.
        Impairment of autophagy: from hereditary disorder to drug intoxication.
        Toxicology. 2013; 311: 205-215
        • Bizargity P.
        • Schroppel B.
        Autophagy: basic principles and relevance to transplant immunity.
        Am J Transplant. 2014; 14: 1731-1739
        • Cecconi F.
        • Jaattela M.
        Targeting ions-induced autophagy in cancer.
        Cancer Cell. 2014; 26: 599-600
        • Choi A.M.
        • Ryter S.W.
        • Levine B.
        Autophagy in human health and disease.
        N Engl J Med. 2013; 368: 1845-1846
        • Banerjee P.
        • Basu A.
        • Wegiel B.
        • et al.
        Heme oxygenase-1 promotes survival of renal cancer cells through modulation of apoptosis- and autophagy-regulating molecules.
        J Biol Chem. 2012; 287: 32113-32123
        • Liu X.D.
        • Yao J.
        • Tripathi D.N.
        • et al.
        Autophagy mediates HIF2alpha degradation and suppresses renal tumorigenesis.
        Oncogene. 2015; 34: 2450-2460
        • Decuypere J.P.
        • Ceulemans L.J.
        • Agostinis P.
        • et al.
        Autophagy and the kidney: implications for ischemia-reperfusion injury and therapy.
        Am J Kidney Dis. 2015; 66: 699-709
        • Isaka Y.
        • Kimura T.
        • Takabatake Y.
        The protective role of autophagy against aging and acute ischemic injury in kidney proximal tubular cells.
        Autophagy. 2011; 7: 1085-1087
        • Livingston M.J.
        • Dong Z.
        Autophagy in acute kidney injury.
        Semin Nephrol. 2014; 34: 17-26
        • Chen W.T.
        • Hung K.C.
        • Wen M.S.
        • et al.
        Impaired leukocytes autophagy in chronic kidney disease patients.
        Cardiorenal Med. 2013; 3: 254-264
        • Leventhal J.S.
        • He J.C.
        • Ross M.J.
        Autophagy and immune response in kidneys.
        Semin Nephrol. 2014; 34: 53-61
        • Jiang M.
        • Wei Q.
        • Dong G.
        • Komatsu M.
        • Su Y.
        • Dong Z.
        Autophagy in proximal tubules protects against acute kidney injury.
        Kidney Int. 2012; 82: 1271-1283
        • Kaushal G.P.
        Autophagy protects proximal tubular cells from injury and apoptosis.
        Kidney Int. 2012; 82: 1250-1253
        • Kaushal G.P.
        • Kaushal V.
        • Herzog C.
        • Yang C.
        Autophagy delays apoptosis in renal tubular epithelial cells in cisplatin cytotoxicity.
        Autophagy. 2008; 4: 710-712
        • Kimura T.
        • Takahashi A.
        • Takabatake Y.
        • et al.
        Autophagy protects kidney proximal tubule epithelial cells from mitochondrial metabolic stress.
        Autophagy. 2013; 9: 1876-1886
        • Liu S.
        • Hartleben B.
        • Kretz O.
        • et al.
        Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury.
        Autophagy. 2012; 8: 826-837
        • Xu Y.
        • Ruan S.
        • Wu X.
        • Chen H.
        • Zheng K.
        • Fu B.
        Autophagy and apoptosis in tubular cells following unilateral ureteral obstruction are associated with mitochondrial oxidative stress.
        Int J Mol Med. 2013; 31: 628-636
        • Kume S.
        • Uzu T.
        • Maegawa H.
        • Koya D.
        Autophagy: a novel therapeutic target for kidney diseases.
        Clin Exp Nephrol. 2012; 16: 827-832
        • Kume S.
        • Yamahara K.
        • Yasuda M.
        • Maegawa H.
        • Koya D.
        Autophagy: emerging therapeutic target for diabetic nephropathy.
        Semin Nephrol. 2014; 34: 9-16
        • Pallet N.
        Emerging roles of autophagy in the stressed kidney allograft.
        Semin Nephrol. 2014; 34: 34-41
        • Pallet N.
        • Livingston M.
        • Dong Z.
        Emerging functions of autophagy in kidney transplantation.
        Am J Transplant. 2014; 14: 13-20
        • Wang Z.
        • Choi M.E.
        Autophagy in kidney health and disease.
        Antioxid Redox Signal. 2014; 20: 519-537
        • Oczypok E.A.
        • Oury T.D.
        • Chu C.T.
        It’s a cell-eat-cell world: autophagy and phagocytosis.
        Am J Pathol. 2013; 182: 612-622
        • Turcotte S.
        • Giaccia A.J.
        Targeting cancer cells through autophagy for anticancer therapy.
        Curr Opin Cell Biol. 2010; 22: 246-251
        • Bejarano E.
        • Cuervo A.M.
        Chaperone-mediated autophagy.
        Proc Am Thorac Soc. 2010; 7: 29-39
        • Massey A.
        • Kiffin R.
        • Cuervo A.M.
        Pathophysiology of chaperone-mediated autophagy.
        Int J Biochem Cell Biol. 2004; 36: 2420-2434
        • Czyzyk-Krzeska M.F.
        • Meller J.
        • Plas D.R.
        Not all autophagy is equal.
        Autophagy. 2012; 8: 1155-1156
        • Decuypere J.P.
        • Pirenne J.
        • Jochmans I.
        Autophagy in renal ischemia-reperfusion injury: friend or foe?.
        Am J Transplant. 2014; 14: 1464-1465
        • Dong Z.
        Introduction: autophagy in kidneys.
        Semin Nephrol. 2014; 34: 1
        • Franch H.A.
        Chaperone-mediated autophagy in the kidney: the road more traveled.
        Semin Nephrol. 2014; 34: 72-83
        • Havasi A.
        • Borkan S.C.
        Apoptosis and acute kidney injury.
        Kidney Int. 2011; 80: 29-40
        • He L.
        • Livingston M.J.
        • Dong Z.
        Autophagy in acute kidney injury and repair.
        Nephron Clin Pract. 2014; 127: 56-60
        • Jia G.
        • Sowers J.R.
        Autophagy: a housekeeper in cardiorenal metabolic health and disease.
        Biochim Biophys Acta. 2015; 1852: 219-224
        • Jangamreddy J.R.
        • Panigrahi S.
        • Los M.J.
        Monitoring of autophagy is complicated--salinomycin as an example.
        Biochim Biophys Acta. 2015; 1853: 604-610
        • Weihl C.C.
        Monitoring autophagy in the treatment of protein aggregate diseases: steps toward identifying autophagic biomarkers.
        Neurotherapeutics. 2013; 10: 383-390
        • Li L.
        • Wang Z.V.
        • Hill J.A.
        • Lin F.
        New autophagy reporter mice reveal dynamics of proximal tubular autophagy.
        J Am Soc Nephrol. 2014; 25: 305-315
        • Tsuyuki S.
        • Takabayashi M.
        • Kawazu M.
        • et al.
        Detection of WIPI1 mRNA as an indicator of autophagosome formation.
        Autophagy. 2014; 10: 497-513
        • Li H.
        • Jin X.
        • Zhang Z.
        • Xing Y.
        • Kong X.
        Inhibition of autophagy enhances apoptosis induced by the PI3K/AKT/mTor inhibitor NVP-BEZ235 in renal cell carcinoma cells.
        Cell Biochem Funct. 2013; 31: 427-433
        • Makhov P.
        • Golovine K.
        • Teper E.
        • et al.
        Piperlongumine promotes autophagy via inhibition of Akt/mTOR signalling and mediates cancer cell death.
        Br J Cancer. 2014; 110: 899-907
        • Zhou J.
        • Liao W.
        • Yang J.
        • et al.
        FOXO3 induces FOXO1-dependent autophagy by activating the AKT1 signaling pathway.
        Autophagy. 2012; 8: 1712-1723
        • Kimura T.
        • Takabatake Y.
        • Takahashi A.
        • Isaka Y.
        Chloroquine in cancer therapy: a double-edged sword of autophagy.
        Cancer Res. 2013; 73: 3-7
        • Kroemer G.
        Autophagy: a druggable process that is deregulated in aging and human disease.
        J Clin Invest. 2015; 125: 1-4
        • Rubinsztein D.C.
        • Marino G.
        • Kroemer G.
        Autophagy and aging. Cell. 2011; 146: 682-695
        • Anders H.J.
        • Schlondorff D.O.
        Innate immune receptors and autophagy: implications for autoimmune kidney injury.
        Kidney Int. 2010; 78: 29-37
        • Yu J.
        • Parkhitko A.
        • Henske E.P.
        Autophagy: an ’Achilles’ heel of tumorigenesis in TSC and LAM.
        Autophagy. 2011; 7: 1400-1401
        • Knodler L.A.
        • Celli J.
        Eating the strangers within: host control of intracellular bacteria via xenophagy.
        Cell Microbiol. 2011; 13: 1319-1327
        • Kroemer G.
        • Levine B.
        Autophagic cell death: the story of a misnomer.
        Nat Rev Mol Cell Biol. 2008; 9: 1004-1010
        • Thompson C.B.
        Apoptosis in the pathogenesis and treatment of disease.
        Science. 1995; 267: 1456-1462
        • Marino G.
        • Niso-Santano M.
        • Baehrecke E.H.
        • Kroemer G.
        Self-consumption: the interplay of autophagy and apoptosis.
        Nat Rev Mol Cell Biol. 2014; 15: 81-94
        • Maiuri M.C.
        • Zalckvar E.
        • Kimchi A.
        • Kroemer G.
        Self-eating and self-killing: crosstalk between autophagy and apoptosis.
        Nat Rev Mol Cell Biol. 2007; 8: 741-752
        • Tavassoly I.
        • Parmar J.
        • Shajahan-Haq A.N.
        • Clarke R.
        • Baumann W.T.
        • Tyson J.J.
        Dynamic modeling of the interaction between autophagy and apoptosis in mammalian cells.
        CPT Pharmacometrics Syst Pharmacol. 2015; 4: 263-272
        • Vanden Berghe T.
        • Linkermann A.
        • Jouan-Lanhouet S.
        • Walczak H.
        • Vandenabeele P.
        Regulated necrosis: the expanding network of non-apoptotic cell death pathways.
        Nat Rev Mol Cell Biol. 2014; 15: 135-147
        • Pasparakis M.
        • Vandenabeele P.
        Necroptosis and its role in inflammation.
        Nature. 2015; 517: 311-320
        • Liu Y.
        • Levine B.
        Autosis and autophagic cell death: the dark side of autophagy.
        Cell Death Differ. 2015; 22: 367-376
        • Luciani M.F.
        • Giusti C.
        • Harms B.
        • et al.
        Atg1 allows second-signaled autophagic cell death in Dictyostelium.
        Autophagy. 2011; 7: 501-508
        • Anbalagan S.
        • Pires I.M.
        • Blick C.
        • et al.
        Radiosensitization of renal cell carcinoma in vitro through the induction of autophagy.
        Radiother Oncol. 2012; 103: 388-393
        • Jain S.
        • Keys D.
        • Nydam T.
        • Plenter R.J.
        • Edelstein C.L.
        • Jani A.
        Inhibition of autophagy increases apoptosis during re-warming after cold storage in renal tubular epithelial cells.
        Transpl Int. 2015; 28: 214-223
        • Pallet N.
        • Anglicheau D.
        Autophagy: a protective mechanism against nephrotoxicant-induced renal injury.
        Kidney Int. 2009; 75: 118-119
        • Sato S.
        • Adachi A.
        • Sasaki Y.
        • Dai W.
        Autophagy by podocytes in renal biopsy specimens.
        J Nippon Med Sch. 2006; 73: 52-53
        • Nikoletopoulou V.
        • Markaki M.
        • Palikaras K.
        • Tavernarakis N.
        Crosstalk between apoptosis, necrosis and autophagy.
        Biochim Biophys Acta. 2013; 1833: 3448-3459
        • Vaseva A.V.
        • Marchenko N.D.
        • Ji K.
        • Tsirka S.E.
        • Holzmann S.
        • Moll U.M.
        p53 opens the mitochondrial permeability transition pore to trigger necrosis.
        Cell. 2012; 149: 1536-1548
        • Kenzelmann Broz D.
        • Spano Mello S.
        • Bieging K.T.
        • et al.
        Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses.
        Genes Dev. 2013; 27: 1016-1031
        • Wei Y.
        • Pattingre S.
        • Sinha S.
        • Bassik M.
        • Levine B.
        JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy.
        Mol Cell. 2008; 30: 678-688
        • Maiuri M.C.
        • Criollo A.
        • Tasdemir E.
        • et al.
        BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L).
        Autophagy. 2007; 3: 374-376
        • Hou W.
        • Han J.
        • Lu C.
        • Goldstein L.A.
        • Rabinowich H.
        Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis.
        Autophagy. 2010; 6: 891-900
        • Liang J.
        • Shao S.H.
        • Xu Z.X.
        • et al.
        The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis.
        Nat Cell Biol. 2007; 9: 218-224
        • Chandrika B.B.
        • Yang C.
        • Ou Y.
        • et al.
        Endoplasmic reticulum stress-induced autophagy provides cytoprotection from chemical hypoxia and oxidant injury and ameliorates renal ischemia-reperfusion injury.
        PLoS One. 2015; 10: e0140025
        • Cybulsky A.V.
        The intersecting roles of endoplasmic reticulum stress, ubiquitin-proteasome system, and autophagy in the pathogenesis of proteinuric kidney disease.
        Kidney Int. 2013; 84: 25-33
        • Ding W.X.
        • Ni H.M.
        • Gao W.
        • et al.
        Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival.
        J Biol Chem. 2007; 282: 4702-4710
        • Moon S.Y.
        • Kim H.S.
        • Nho K.W.
        • Jang Y.J.
        • Lee S.K.
        Endoplasmic reticulum stress induces epithelial-mesenchymal transition through autophagy via activation of c-Src kinase.
        Nephron Exp Nephrol. 2014; 126: 127-140
        • Pallet N.
        • Anglicheau D.
        • Thervet E.
        Autophagy is an adaptative mechanism against endoplasmic reticulum stress.
        Nephrol Dial Transplant. 2009; 24: 3891
        • Yuan Y.
        • Xu X.
        • Zhao C.
        • et al.
        The roles of oxidative stress, endoplasmic reticulum stress, and autophagy in aldosterone/mineralocorticoid receptor-induced podocyte injury.
        Lab Invest. 2015; 95: 1374-1386
        • Inbal B.
        • Bialik S.
        • Sabanay I.
        • Shani G.
        • Kimchi A.
        DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death.
        J Cell Biol. 2002; 157: 455-468
        • Kimura T.
        • Takabatake Y.
        • Takahashi A.
        • et al.
        Autophagy protects the proximal tubule from degeneration and acute ischemic injury.
        J Am Soc Nephrol. 2011; 22: 902-913
        • Zhou X.J.
        • Rakheja D.
        • Yu X.
        • Saxena R.
        • Vaziri N.D.
        • Silva F.G.
        The aging kidney.
        Kidney Int. 2008; 74: 710-720
        • Kume S.
        • Uzu T.
        • Horiike K.
        • et al.
        Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney.
        J Clin Invest. 2010; 120: 1043-1055
        • Hartleben B.
        • Godel M.
        • Meyer-Schwesinger C.
        • et al.
        Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice.
        J Clin Invest. 2010; 120: 1084-1096
        • Weide T.
        • Huber T.B.
        Implications of autophagy for glomerular aging and disease.
        Cell Tissue Res. 2011; 343: 467-473
        • Molitoris B.A.
        Therapeutic translation in acute kidney injury: the epithelial/endothelial axis.
        J Clin Invest. 2014; 124: 2355-2363
        • Lu C.Y.
        • Hartono J.
        • Senitko M.
        • Chen J.
        The inflammatory response to ischemic acute kidney injury: a result of the ‘right stuff’ in the ‘wrong place’?.
        Curr Opin Nephrol Hypertens. 2007; 16: 83-89
        • Chien C.T.
        • Shyue S.K.
        • Lai M.K.
        Bcl-xL augmentation potentially reduces ischemia/reperfusion induced proximal and distal tubular apoptosis and autophagy.
        Transplantation. 2007; 84: 1183-1190
        • Wu H.H.
        • Hsiao T.Y.
        • Chien C.T.
        • Lai M.K.
        Ischemic conditioning by short periods of reperfusion attenuates renal ischemia/reperfusion induced apoptosis and autophagy in the rat.
        J Biomed Sci. 2009; 16: 19
        • Jiang M.
        • Liu K.
        • Luo J.
        • Dong Z.
        Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury.
        Am J Pathol. 2010; 176: 1181-1192
        • Xia S.
        • Lv J.
        • Gao Q.
        • et al.
        Prenatal exposure to hypoxia induced Beclin 1 signaling-mediated renal autophagy and altered renal development in rat fetuses.
        Reprod Sci. 2015; 22: 156-164
        • Ishihara M.
        • Urushido M.
        • Hamada K.
        • et al.
        Sestrin-2 and BNIP3 regulate autophagy and mitophagy in renal tubular cells in acute kidney injury.
        Am J Physiol Renal Physiol. 2013; 305: F495-F509
        • Bolisetty S.
        • Traylor A.M.
        • Kim J.
        • et al.
        Heme oxygenase-1 inhibits renal tubular macroautophagy in acute kidney injury.
        J Am Soc Nephrol. 2010; 21: 1702-1712
        • Liu W.J.
        • Luo M.N.
        • Tan J.
        • et al.
        Autophagy activation reduces renal tubular injury induced by urinary proteins.
        Autophagy. 2014; 10: 243-256
        • Alers S.
        • Loffler A.S.
        • Wesselborg S.
        • Stork B.
        Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks.
        Mol Cell Biol. 2012; 32: 2-11
        • Chan E.Y.
        • Kir S.
        • Tooze S.A.
        siRNA screening of the kinome identifies ULK1 as a multidomain modulator of autophagy.
        J Biol Chem. 2007; 282: 25464-25474
        • Russell R.C.
        • Tian Y.
        • Yuan H.
        • et al.
        ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase.
        Nat Cell Biol. 2013; 15: 741-750
        • Shukla S.
        • Patric I.R.
        • Patil V.
        • et al.
        Methylation silencing of ULK2, an autophagy gene, is essential for astrocyte transformation and tumor growth.
        J Biol Chem. 2014; 289: 22306-22318
        • Alnasser H.A.
        • Guan Q.
        • Zhang F.
        • Gleave M.E.
        • Nguan C.Y.
        • Du C.
        Requirement of clusterin expression for prosurvival autophagy in hypoxic kidney tubular epithelial cells.
        Am J Physiol Renal Physiol. 2016; 310: F160-F173
        • Kawakami T.
        • Inagi R.
        • Takano H.
        • et al.
        Endoplasmic reticulum stress induces autophagy in renal proximal tubular cells.
        Nephrol Dial Transplant. 2009; 24: 2665-2672
        • Guan X.
        • Qian Y.
        • Shen Y.
        • et al.
        Autophagy protects renal tubular cells against ischemia/reperfusion injury in a time-dependent manner.
        Cell Physiol Biochem. 2015; 36: 285-298
        • Wang I.K.
        • Sun K.T.
        • Tsai T.H.
        • et al.
        MiR-20a-5p mediates hypoxia-induced autophagy by targeting ATG16L1 in ischemic kidney injury.
        Life Sci. 2015; 136: 133-141
        • Zhang Y.L.
        • Zhang J.
        • Cui L.Y.
        • Yang S.
        Autophagy activation attenuates renal ischemia-reperfusion injury in rats.
        Exp Biol Med (Maywood). 2015; 240: 1590-1598
        • Baisantry A.
        • Bhayana S.
        • Rong S.
        • et al.
        Autophagy induces prosenescent changes in proximal tubular S3 segments.
        J Am Soc Nephrol. 2015; (Epub ahead of print)
        • Cheng H.
        • Fan X.
        • Lawson W.E.
        • Paueksakon P.
        • Harris R.C.
        Telomerase deficiency delays renal recovery in mice after ischemia-reperfusion injury by impairing autophagy.
        Kidney Int. 2015; 88: 85-94
        • Buyuklu M.
        • Kandemir F.M.
        • Ozkaraca M.
        • et al.
        Beneficial effects of lycopene against contrast medium-induced oxidative stress, inflammation, autophagy, and apoptosis in rat kidney.
        Hum Exp Toxicol. 2015; 34: 487-496
        • Ko G.J.
        • Bae S.Y.
        • Hong Y.A.
        • Pyo H.J.
        • Kwon Y.J.
        Radiocontrast-induced nephropathy is attenuated by autophagy through regulation of apoptosis and inflammation.
        Hum Exp Toxicol. 2015; (Epub ahead of print)
        • Suzuki C.
        • Isaka Y.
        • Takabatake Y.
        • et al.
        Participation of autophagy in renal ischemia/reperfusion injury.
        Biochem Biophys Res Commun. 2008; 368: 100-106
        • Domitrovic R.
        • Cvijanovic O.
        • Pernjak-Pugel E.
        • Skoda M.
        • Mikelic L.
        • Crncevic-Orlic Z.
        Berberine exerts nephroprotective effect against cisplatin-induced kidney damage through inhibition of oxidative/nitrosative stress, inflammation, autophagy and apoptosis.
        Food Chem Toxicol. 2013; 62: 397-406
        • Herzog C.
        • Yang C.
        • Holmes A.
        • Kaushal G.P.
        zVAD-fmk prevents cisplatin-induced cleavage of autophagy proteins but impairs autophagic flux and worsens renal function.
        Am J Physiol Renal Physiol. 2012; 303: F1239-F1250
        • Periyasamy-Thandavan S.
        • Jiang M.
        • Wei Q.
        • Smith R.
        • Yin X.M.
        • Dong Z.
        Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells.
        Kidney Int. 2008; 74: 631-640
        • Rovetta F.
        • Stacchiotti A.
        • Consiglio A.
        • et al.
        ER signaling regulation drives the switch between autophagy and apoptosis in NRK-52E cells exposed to cisplatin.
        Exp Cell Res. 2012; 318: 238-250
        • Takahashi A.
        • Kimura T.
        • Takabatake Y.
        • et al.
        Autophagy guards against cisplatin-induced acute kidney injury.
        Am J Pathol. 2012; 180: 517-525
        • Yang C.
        • Kaushal V.
        • Shah S.V.
        • Kaushal G.P.
        Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells.
        Am J Physiol Renal Physiol. 2008; 294 (F777-87)
        • Chargui A.
        • Zekri S.
        • Jacquillet G.
        • et al.
        Cadmium-induced autophagy in rat kidney: an early biomarker of subtoxic exposure.
        Toxicol Sci. 2011; 121: 31-42
        • Pallet N.
        • Bouvier N.
        • Legendre C.
        • et al.
        Autophagy protects renal tubular cells against cyclosporine toxicity.
        Autophagy. 2008; 4: 783-791
        • Yadav R.K.
        • Lee G.H.
        • Lee H.Y.
        • et al.
        TMBIM6 (transmembrane BAX inhibitor motif containing 6) enhances autophagy and reduces renal dysfunction in a cyclosporine A-induced nephrotoxicity model.
        Autophagy. 2015; 11: 1760-1774
        • Kimura A.
        • Ishida Y.
        • Wada T.
        • et al.
        The absence of interleukin-6 enhanced arsenite-induced renal injury by promoting autophagy of tubular epithelial cells with aberrant extracellular signal-regulated kinase activation.
        Am J Pathol. 2010; 176: 40-50
        • Pallet N.
        Response letter to “autophagy in renal ischemia-reperfusion injury: friend or foe?”.
        Am J Transplant. 2014; 14: 1466-1467
        • Zeng Y.
        • Li S.
        • Wu J.
        • et al.
        Autophagy inhibitors promoted aristolochic acid I induced renal tubular epithelial cell apoptosis via mitochondrial pathway but alleviated nonapoptotic cell death in mouse acute aritolochic acid nephropathy model.
        Apoptosis. 2014; 19: 1215-1224
        • Cui J.
        • Bai X.Y.
        • Sun X.
        • et al.
        Rapamycin protects against gentamicin-induced acute kidney injury via autophagy in mini-pig models.
        Sci Rep. 2015; 5: 11256
        • Lim S.W.
        • Hyoung B.J.
        • Piao S.G.
        • Doh K.C.
        • Chung B.H.
        • Yang C.W.
        Chronic cyclosporine nephropathy is characterized by excessive autophagosome formation and decreased autophagic clearance.
        Transplantation. 2012; 94: 218-225
        • Takakura A.
        • Nelson E.A.
        • Haque N.
        • et al.
        Pyrimethamine inhibits adult polycystic kidney disease by modulating STAT signaling pathways.
        Hum Mol Genet. 2011; 20: 4143-4154
        • Yu W.
        • Kong T.
        • Beaudry S.
        • et al.
        Polycystin-1 protein level determines activity of the Galpha12/JNK apoptosis pathway.
        J Biol Chem. 2010; 285: 10243-10251
        • Wang S.
        • Livingston M.J.
        • Su Y.
        • Dong Z.
        Reciprocal regulation of cilia and autophagy via the MTOR and proteasome pathways.
        Autophagy. 2015; 11: 607-616
        • Wang S.
        • Wei Q.
        • Dong G.
        • Dong Z.
        ERK-mediated suppression of cilia in cisplatin-induced tubular cell apoptosis and acute kidney injury.
        Biochim Biophys Acta. 2013; 1832: 1582-1590
        • Belibi F.A.
        • Edelstein C.L.
        Novel targets for the treatment of autosomal dominant polycystic kidney disease.
        Expert Opin Investig Drugs. 2010; 19: 315-328
        • Ecder T.
        • Melnikov V.Y.
        • Stanley M.
        • et al.
        Caspases, Bcl-2 proteins and apoptosis in autosomal-dominant polycystic kidney disease.
        Kidney Int. 2002; 61: 1220-1230
        • Serra A.L.
        • Poster D.
        • Kistler A.D.
        • et al.
        Sirolimus and kidney growth in autosomal dominant polycystic kidney disease.
        N Engl J Med. 2010; 363: 820-829
        • Takiar V.
        • Nishio S.
        • Seo-Mayer P.
        • et al.
        Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis.
        Proc Natl Acad Sci U S A. 2011; 108: 2462-2467
        • Walz G.
        • Budde K.
        • Mannaa M.
        • et al.
        Everolimus in patients with autosomal dominant polycystic kidney disease.
        N Engl J Med. 2010; 363: 830-840
        • Lin H.H.
        • Yang T.P.
        • Jiang S.T.
        • Yang H.Y.
        • Tang M.J.
        Bcl-2 overexpression prevents apoptosis-induced Madin-Darby canine kidney simple epithelial cyst formation.
        Kidney Int. 1999; 55: 168-178
        • Belibi F.
        • Zafar I.
        • Ravichandran K.
        • et al.
        Hypoxia-inducible factor-1alpha (HIF-1alpha) and autophagy in polycystic kidney disease (PKD).
        Am J Physiol Renal Physiol. 2011; 300 (F1235-43)
        • Inoki K.
        mTOR signaling in autophagy regulation in the kidney.
        Semin Nephrol. 2014; 34: 2-8
        • Wu M.
        • Wahl P.R.
        • Le Hir M.
        • Wackerle-Men Y.
        • Wuthrich R.P.
        • Serra A.L.
        Everolimus retards cyst growth and preserves kidney function in a rodent model for polycystic kidney disease.
        Kidney Blood Press Res. 2007; 30: 253-259
        • Barbosa Junior Ade A.
        • Zhou H.
        • Hultenschmidt D.
        • Totovic V.
        • Jurilj N.
        • Pfeifer U.
        Inhibition of cellular autophagy in proximal tubular cells of the kidney in streptozotocin-diabetic and uninephrectomized rats.
        Virchows Arch B Cell Pathol Incl Mol Pathol. 1992; 61: 359-366
        • Zhao X.
        • Liu G.
        • Shen H.
        • et al.
        Liraglutide inhibits autophagy and apoptosis induced by high glucose through GLP-1R in renal tubular epithelial cells.
        Int J Mol Med. 2015; 35: 684-692
        • Xin W.
        • Zhao X.
        • Liu L.
        • et al.
        Acetyl-CoA carboxylase 2 suppression rescues human proximal tubular cells from palmitic acid induced lipotoxicity via autophagy.
        Biochem Biophys Res Commun. 2015; 463: 364-369
        • Wu Y.
        • Zhang Y.
        • Wang L.
        • Diao Z.
        • Liu W.
        The role of autophagy in kidney inflammatory injury via the NF-kappaB route induced by LPS.
        Int J Med Sci. 2015; 12: 655-667
        • Chung S.D.
        • Lai T.Y.
        • Chien C.T.
        • Yu H.J.
        Activating Nrf-2 signaling depresses unilateral ureteral obstruction-evoked mitochondrial stress-related autophagy, apoptosis and pyroptosis in kidney.
        PLoS One. 2012; 7: e47299
        • Kim W.Y.
        • Nam S.A.
        • Song H.C.
        • et al.
        The role of autophagy in unilateral ureteral obstruction rat model.
        Nephrology (Carlton). 2012; 17: 148-159
        • Ding Y.
        • Choi M.E.
        Regulation of autophagy by TGF-beta: emerging role in kidney fibrosis.
        Semin Nephrol. 2014; 34: 62-71
        • Ding Y.
        • Kim S.
        • Lee S.Y.
        • Koo J.K.
        • Wang Z.
        • Choi M.E.
        Autophagy regulates TGF-beta expression and suppresses kidney fibrosis induced by unilateral ureteral obstruction.
        J Am Soc Nephrol. 2014; 25: 2835-2846
        • Kim S.I.
        • Na H.J.
        • Ding Y.
        • Wang Z.
        • Lee S.J.
        • Choi M.E.
        Autophagy promotes intracellular degradation of type I collagen induced by transforming growth factor (TGF)-beta1.
        J Biol Chem. 2012; 287: 11677-11688
        • Xu Y.
        • Yang S.
        • Huang J.
        • Ruan S.
        • Zheng Z.
        • Lin J.
        Tgf-beta1 induces autophagy and promotes apoptosis in renal tubular epithelial cells.
        Int J Mol Med. 2012; 29: 781-790
        • Bonegio R.
        • Lieberthal W.
        Role of apoptosis in the pathogenesis of acute renal failure.
        Curr Opin Nephrol Hypertens. 2002; 11: 301-308
        • Turkmen K.
        • Martin J.
        • Akcay A.
        • et al.
        Apoptosis and autophagy in cold preservation ischemia.
        Transplantation. 2011; 91: 1192-1197
        • Harrison D.E.
        • Strong R.
        • Sharp Z.D.
        • et al.
        Rapamycin fed late in life extends lifespan in genetically heterogeneous mice.
        Nature. 2009; 460: 392-395
        • Lieberthal W.
        • Fuhro R.
        • Andry C.C.
        • et al.
        Rapamycin impairs recovery from acute renal failure: role of cell-cycle arrest and apoptosis of tubular cells.
        Am J Physiol Renal Physiol. 2001; 281: F693-F706
        • Letavernier E.
        • Bruneval P.
        • Mandet C.
        • et al.
        High sirolimus levels may induce focal segmental glomerulosclerosis de novo.
        Clin J Am Soc Nephrol. 2007; 2: 326-333
        • Letavernier E.
        • Pe’raldi M.N.
        • Pariente A.
        • Morelon E.
        • Legendre C.
        Proteinuria following a switch from calcineurin inhibitors to sirolimus.
        Transplantation. 2005; 80: 1198-1203
        • Pallet N.
        • Legendre C.
        Adverse events associated with mTOR inhibitors.
        Expert Opin Drug Saf. 2013; 12: 177-186