Advertisement

The Necrosome in Acute Kidney Injury

  • Yanfang Xu
    Correspondence
    Address reprint requests to Yanfang Xu, MD, Department of Nephrology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
    Affiliations
    Department of Nephrology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
    Search for articles by this author
  • Jiahuai Han
    Affiliations
    State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
    Search for articles by this author

      Summary

      Cell death and inflammation in the proximal tubules are the hallmarks of acute kidney injury (AKI), but the underlying mechanism has not been fully elucidated. Recent evidence has shown that necroptosis, a type of programmed necrosis, plays an important role in AKI. The necrosis-inducing signaling complex is called the necrosome, which contains receptor-interacting protein 1, receptor-interacting protein 3, and mixed lineage kinase domain-like protein. Studies have found that inhibition of the core components of the necroptotic pathway by gene knockout, RNA interference, or a chemical inhibitor diminished proximal tubule damage, showing that necroptosis is a major contributor to AKI. This review focuses on the functional roles of the necrosome in regulating renal tubular cell necroptosis, and the physiological and pathologic roles of necrosome in AKI.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Nephrology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rewa O.
        • Bagshaw S.M.
        Acute kidney injury-epidemiology outcomes and economics.
        Nat Rev Nephrol. 2014; 10: 193-207
        • Gomez H.
        • Ince C.
        • de Backer D.
        • Pickkers P.
        • Payen D.
        • Hotchkiss J.
        • et al.
        A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury.
        Shock. 2014; 41: 3-11
        • Singh A.P.
        • Junemann A.
        • Muthuraman A.
        • Jaggi A.S.
        • Singh N.
        • Grover K.
        • et al.
        Animal models of acute renal failure.
        Pharmacol Rep. 2012; 64: 31-44
        • Liu J.
        • Krautzberger A.M.
        • Sui S.H.
        • Hofmann O.M.
        • Chen Y.
        • Baetscher M.
        • et al.
        Cell specific translational profiling in acute kidney injury.
        J Clin Invest. 2014; 124: 1242-1254
        • Kusaba T.
        • Lalli M.
        • Kramann R.
        • Kobayashi A.
        • Humphreys B.D.
        Differentiated kidney epithelial cells repair injured proximal tubule.
        Proc Natl Acad Sci U S A. 2014; 111: 1527-1532
        • Linkermann A.
        • Skouta R.
        • Himmerkus N.
        • Mulay S.R.
        • Dewitz C.
        • De Zen F.
        • et al.
        Synchronized renal tubular cell death involves ferroptosis.
        Proc Natl Acad Sci U S A. 2014; 111: 16836-16841
        • Linkermann A.
        • Chen G.
        • Dong G.
        • Kunzendorf U.
        • Krautwald S.
        • Dong Z.
        Regulated cell death in AKI.
        J Am Soc Nephrol. 2014; 25: 2689-2701
        • Jiang M.
        • Liu K.
        • Luo J.
        • Dong Z.
        Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury.
        Am J Pathol. 2010; 176: 1181-1192
        • Degterev A.
        • Huang Z.
        • Boyce M.
        • Li Y.
        • Jagtap P.
        • Mizushima N.
        • et al.
        Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury.
        Nat Chem Biol. 2005; 1: 112-119
        • Xu Y.
        • Ma H.
        • Shao J.
        • Wu J.
        • Zhou L.
        • Zhang Z.
        • et al.
        A role for tubular necroptosis in cisplatin-induced AKI.
        J Am Soc Nephrol. 2015; 26: 2647-2658
        • Linkermann A.
        • Bräsen J.H.
        • Darding M.
        • Jin M.K.
        • Sanz A.B.
        • et al.
        Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury.
        Proc Natl Acad Sci U S A. 2013; 110: 12024-12029
        • Linkermann A.
        • Bräsen J.H.
        • Himmerkus N.
        • Liu S.
        • Huber T.B.
        • Kunzendorf U.
        • et al.
        Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury.
        Kidney Int. 2012; 81: 751-761
        • Zhang D.W.
        • Shao J.
        • Lin J.
        • Zhang N.
        • Lu B.J.
        • Lin S.C.
        • et al.
        RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis.
        Science. 2009; 325: 332-336
        • Cho Y.S.
        • Challa S.
        • Moquin D.
        • Genga R.
        • Ray T.D.
        • Guildford M.
        • et al.
        Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation.
        Cell. 2009; 137: 1112-1123
        • He S.
        • Wang L.
        • Miao L.
        • Wang T.
        • Du F.
        • Zhao L.
        • et al.
        Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α.
        Cell. 2009; 137: 1100-1111
        • Sun L.
        • Wang H.
        • Wang Z.
        • He S.
        • Chen S.
        • Liao D.
        • et al.
        Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase.
        Cell. 2012; 148: 213-227
        • Wang H.
        • Sun L.
        • Su L.
        • Rizo J.
        • Liu L.
        • Wang L.F.
        • et al.
        Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3.
        Mol Cell. 2014; 54: 133-146
        • Cai Z.
        • Jitkaew S.
        • Zhao J.
        • Chiang H.C.
        • Choksi S.
        • Liu J.
        • et al.
        Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis.
        Nat Cell Biol. 2014; 16: 55-65
        • Lockshin R.A.
        • Williams C.M.
        Programmed cell death—II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths.
        J Insect Physiol. 1964; 10: 643-649
        • Laster S.M.
        • Wood J.G.
        • Gooding L.R.
        Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis.
        J Immunol. 1988; 141: 2629-2634
        • Holler N.
        • Zaru R.
        • Micheau O.
        • Thome M.
        • Attinger A.
        • Valitutti S.
        • et al.
        Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule.
        Nat Immunol. 2000; 1: 489-495
        • Ofengeim D.
        • Yuan J.
        Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death.
        Nat Rev Mol Cell Biol. 2013; 14: 727-736
        • Festjens N.
        • Vanden Berghe T.
        • Cornelis S.
        • Vandenabeele P.
        RIP1, a kinase on the crossroads of a cell’s decision to live or die.
        Cell Death Differ. 2007; 14 (400-10)
        • Wu X.N.
        • Yang Z.H.
        • Wang X.K.
        • Zhang Y.
        • Wan H.
        • Song Y.
        • et al.
        Distinct roles of RIP1-RIP3 hetero-and RIP3-RIP3 homo-interaction in mediating necroptosis.
        Cell Death Differ. 2014; 21: 1709-1720
        • Meylan E.
        • Tschopp J.
        The RIP kinases: crucial integrators of cellular stress.
        Trends Biochem Sci. 2005; 30: 151-159
        • Korr D.
        • Toschi L.
        • Donner P.
        • Pohlenz H.D.
        • Kreft B.
        • Weiss B.
        LRRK1 protein kinase activity is stimulated upon binding of GTP to its Roc domain.
        Cell Signal. 2006; 18: 910-920
        • Stanger B.Z.
        • Leder P.
        • Lee T.H.
        • Kim E.
        • Seed B.
        RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death.
        Cell. 1995; 81: 513-523
        • Zhang H.
        • Zhou X.
        • McQuade T.
        • Li J.
        • Chan F.K.
        • Zhang J.
        Functional complementation between FADD and RIP1 in embryos and lymphocytes.
        Nature. 2011; 471: 373-376
        • O’Donnell M.A.
        • Legarda-Addison D.
        • Skountzos P.
        • Yeh W.C.
        • Ting A.T.
        Ubiquitination of RIP1 regulates an NF-κB-independent cell-death switch in TNF signaling.
        Curr Biol. 2007; 17: 418-424
        • Micheau O.
        • Tschopp J.
        Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes.
        Cell. 2003; 114: 181-190
        • Christofferson D.E.
        • Yuan J.
        Necroptosis as an alternative form of programmed cell death.
        Curr Opin Cell Biol. 2010; 22: 263-268
        • Feoktistova M.
        • Geserick P.
        • Kellert B.
        • Dimitrova D.P.
        • Langlais C.
        • Hupe M.
        • et al.
        cIAPs block ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms.
        Mol Cell. 2011; 43: 449-463
        • Kaiser W.J.
        • Upton J.W.
        • Long A.B.
        • Livingston-Rosanoff D.
        • Daley-Bauer L.P.
        • Hakem R.
        • et al.
        RIP3 mediates the embryonic lethality of caspase-8-deficient mice.
        Nature. 2011; 471: 368-372
        • Han J.
        • Zhong C.Q.
        • Zhang D.W.
        Programmed necrosis: backup to and competitor with apoptosis in the immune system.
        Nat Immunol. 2011; 12: 1143-1149
        • Ma Y.
        • Temkin V.
        • Liu H.
        • Pope R.M.
        NF-κB protects macrophages from lipopolysaccharide-induced cell death: the role of caspase 8 and receptor-interacting protein.
        J Biol Chem. 2005; 280: 41827-41834
        • Upton J.W.
        • Kaiser W.J.
        • Mocarski E.S.
        Virus inhibition of RIP3-dependent necrosis.
        Cell Host Microbe. 2010; 7: 302-313
        • Lamkanfi M.
        • Dixit V.M.
        Manipulation of host cell death pathways during microbial infections.
        Cell Host Microbe. 2010; 8: 44-54
        • Kaczmarek A.
        • Vandenabeele P.
        • Krysko D.V.
        Necroptosis: the release of damage associated molecular patterns and its physiological relevance.
        Immunity. 2013; 38: 209-223
        • Linkermann A.
        • De Zen F.
        • Weinberg J.
        • Kunzendorf U.
        • Krautwald S.
        Programmed necrosis in acute kidney injury.
        Nephrol Dial Transplant. 2012; 27: 3412-3419
        • Lieberthal W.
        • Menza S.A.
        • Levine J.S.
        Graded ATP depletion can cause necrosis or apoptosis of cultured mouse proximal tubular cells.
        Am J Physiol. 1998; 274: F315-F327
        • Ruchalski K.
        • Mao H.
        • Singh S.K.
        • Wang Y.
        • Mosser D.D.
        • Li F.
        • et al.
        HSP72 inhibits apoptosis-inducing factor release in ATP-depleted renal epithelial cells.
        Am J Physiol Cell Physiol. 2003; 285: C1483-C1493
        • Liang X.
        • Chen Y.
        • Zhang L.
        • Jiang F.
        • Wang W.
        • Ye Z.
        • et al.
        Necroptosis, a novel form of caspase-independent cell death, contributes to renal epithelial cell damage in an ATP-depleted renal ischemia model.
        Mol Med Rep. 2014; 10: 719-724
        • Lau A.
        • Wang S.
        • Jiang J.
        • Haig A.
        • Pavlosky A.
        • Linkermann A.
        • et al.
        RIPK3-mediated necroptosis promotes donor kidney inflammatory injury and reduces allograft survival.
        Am J Transplant. 2013; 13: 2805-2818
        • Günther C.
        • Martini E.
        • Wittkopf N.
        • Amann K.
        • Weigmann B.
        • Neumann H.
        • et al.
        Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis.
        Nature. 2011; 477: 335-339
        • Oberst A.
        • Dillon C.P.
        • Weinlich R.
        • McCormick L.L.
        • Fitzgerald P.
        • Pop C.
        • et al.
        Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis.
        Nature. 2011; 471: 363-367
        • Dong X.
        • Swaminathan S.
        • Bachman L.A.
        • Croatt A.J.
        • Nath K.A.
        • Griffin M.D.
        Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia-reperfusion injury.
        Kidney Int. 2007; 71: 619-628
        • Misseri R.
        • Meldrum D.R.
        • Dinarello C.A.
        • Dagher P.
        • Hile K.L.
        • Rink R.C.
        TNF-alpha mediates obstruction-induced renal tubular cell apoptosis and proapoptotic signaling.
        Am J Physiol Renal Physiol. 2005; 288: F406-F411
        • Ea C.K.
        • Deng L.
        • Xia Z.P.
        • Pineda G.
        • Chen Z.J.
        Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO.
        Mol Cell. 2006; 22: 245-257
        • Bertrand M.J.
        • Milutinovic S.
        • Dickson K.M.
        • Ho W.C.
        • Boudreault A.
        • Durkin J.
        • et al.
        cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination.
        Mol Cell. 2008; 30: 689-700
        • Shembade N.
        • Ma A.
        • Harhaj E.W.
        Inhibition of NF-κB signaling by A20 through disruption of ubiquitin enzyme complexes.
        Science. 2010; 327: 1135-1139
        • Gurung P.
        • Man S.M.
        • Kanneganti T.D.
        A20 is a regulator of necroptosis.
        Nat Immunol. 2015; 16: 596-597
        • Declercq W.
        • Vanden Berghe T.
        • Vandenabeele P.
        RIP kinases at the crossroads of cell death and survival.
        Cell. 2009; 138: 229-232
        • Chen W.
        • Zhou Z.
        • Li L.
        • Zhong C.Q.
        • Zheng X.
        • Wu X.
        • et al.
        Diverse sequence determinants control human and mouse receptor interacting protein 3 (RIP3) and mixed lineage kinase domain-like (MLKL) interaction in necroptotic signaling.
        J Biol Chem. 2013; 288: 16247-16261
        • Sun W.
        • Yu Y.
        • Dotti G.
        • Shen T.
        • Tan X.
        • Savoldo B.
        • et al.
        PPM1A and PPM1B act as IKKbeta phosphatases to terminate TNFalpha induced IKKbeta-NF-kappaB activation.
        Cell Signal. 2009; 21: 95-102
        • Chen W.
        • Wu J.
        • Li L.
        • Zhang Z.
        • Ren J.
        • Liang Y.
        • et al.
        Ppm1b negatively regulates necroptosis through dephosphorylating Rip3.
        Nat Cell Biol. 2015; 17: 434-444
        • Baines C.P.
        • Kaiser R.A.
        • Purcell N.H.
        • Blair N.S.
        • Osinska H.
        • Hambleton M.A.
        • et al.
        Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death.
        Nature. 2005; 434: 658-662
        • Xu Y.
        • Huang S.
        • Liu Z.G.
        • Han J.
        Poly(ADP-ribose) polymerase-1 signaling to mitochondria in necrotic cell death requires RIP1/TRAF2-mediated JNK1 activation.
        J Biol Chem. 2006; 281: 8788-8795
        • Zhao H.
        • Ning J.
        • Lemaire A.
        • Koumpa F.S.
        • Sun J.J.
        • Fung A.
        • et al.
        Necroptosis and parthanatos are involved in remote lung injury after receiving ischemic renal allografts in rats.
        Kidney Int. 2015; 87: 738-748
        • Dronkert M.L.
        • Kanaar R.
        Repair of DNA interstrand cross-links.
        Mutat Res. 2001; 486: 217-247
        • Pabla N.
        • Dong Z.
        Cisplatin nephrotoxicity: mechanisms and renoprotective strategies.
        Kidney Int. 2008; 73: 994-1007
        • Kuo Y.M.
        • Gybina A.A.
        • Pyatskowit J.W.
        • Gitschier J.
        • Prohaska J.R.
        Copper transport protein (Ctr1) levels in mice are tissue specific and dependent on copper status.
        J Nutr. 2006; 136: 21-26
        • Ludwig T.
        • Riethmüller C.
        • Gekle M.
        • Schwerdt G.
        • Oberleithner H.
        Nephrotoxicity of platinum complexes is related to basolateral organic cation transport.
        Kidney Int. 2004; 66: 196-202
        • Yonezawa A.
        • Masuda S.
        • Nishihara K.
        • Yano I.
        • Katsura T.
        • Inui K.
        Association between tubular toxicity of cisplatin and expression of organic cation transporter rOCT2 (Slc22a2) in the rat.
        Biochem Pharmacol. 2005; 70: 1823-1831
        • Sridevi P.
        • Nhiayi M.K.
        • Wang J.Y.
        Genetic disruption of Abl nuclear import reduces renal apoptosis in a mouse model of cisplatin-induced nephrotoxicity.
        Cell Death Differ. 2013; 20: 953-962
        • Chen X.
        • Li W.
        • Ren J.
        • Huang D.
        • He W.T.
        • Song Y.
        • et al.
        Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death.
        Cell Res. 2014; 24: 105-121
        • Kim J.
        • Long K.E.
        • Tang K.
        • Padanilam B.J.
        Poly(ADP-ribose) polymerase 1 activation is required for cisplatin nephrotoxicity.
        Kidney Int. 2012; 82: 193-203
        • Wei Q.
        • Dong G.
        • Franklin J.
        • Dong Z.
        The pathological role of Bax in cisplatin nephrotoxicity.
        Kidney Int. 2007; 72: 53-62
        • Ramesh G.
        • Reeves W.B.
        TNFR2-mediated apoptosis and necrosis in cisplatin-induced acute renal failure.
        Am J Physiol Renal Physiol. 2003; 285: F610-F618