Advertisement
Review Article| Volume 36, ISSUE 3, P237-250, May 2016

Download started.

Ok

The Role of BCL-2 Family Members in Acute Kidney Injury

  • Steven C. Borkan
    Correspondence
    Address reprint requests to Steven C. Borkan, MD, Evans Biomedical Research Center, Room 546, Boston University Medical Center, 650 Albany St, Boston, MA 02118.
    Affiliations
    Evans Biomedical Research Center, Boston University Medical Center, Boston, MA
    Search for articles by this author

      Summary

      B-cell lymphoma 2 (BCL-2) family proteins gather at the biologic cross-roads of renal cell survival: the outer mitochondrial membrane. Despite shared sequence and structural features, members of this conserved protein family constantly antagonize each other in a life-and-death battle. BCL-2 members innocently reside within renal cells until activated or de-activated by physiologic stresses caused by common nephrotoxins, transient ischemia, or acute glomerulonephritis. Recent experimental data not only illuminate the intricate mechanisms of apoptosis, the most familiar form of BCL-2–mediated cell death, but emphasizes their newfound roles in necrosis, necroptosis, membrane pore transition regulated necrosis, and other forms of acute cell demise. A major paradigm shift in non–cell death roles of the BCL-2 family has occurred. BCL-2 proteins also regulate critical daily renal cell housekeeping functions including cell metabolism, autophagy (an effective means for recycling cell components), mitochondrial morphology (organelle fission and fusion), as well as mitochondrial biogenesis. This article considers new concepts in the biochemical and structural regulation of BCL-2 proteins that contribute to membrane pore permeabilization, a universal feature of cell death. Despite these advances, persistent BCL-2 family mysteries continue to challenge cell biologists. Given their interface with many intracellular functions, it is likely that BCL-2 proteins determine cell viability under many pathologic circumstances relevant to the nephrologist and, as a consequence, represent an ideal therapeutic target.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Nephrology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Youle R.J.
        • Strasser A.
        The BCL-2 protein family: opposing activities that mediate cell death.
        Nat Rev Mol Cell Biol. 2008; 9: 47-59
        • Tsujimoto Y.
        • Yunis J.
        • Onorato-Showe L.
        • Erikson J.
        • Nowell P.C.
        • Croce C.M.
        Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(11;14) chromosome translocation.
        Science. 1984; 224: 1403-1406
        • Joy A.
        • Panicker S.
        • Shapiro J.R.
        Altered nuclear localization of bax protein in BCNU-resistant glioma cells.
        J Neurooncol. 2000; 49: 117-129
        • Gimenez-Cassina A.
        • Danial N.N.
        Regulation of mitochondrial nutrient and energy metabolism by BCL-2 family proteins.
        Trends Endocrinol Metab. 2015; 26: 165-175
        • Chi X.
        • Kale J.
        • Leber B.
        • Andrews D.W.
        Regulating cell death at, on, and in membranes.
        Biochim Biophys Acta. 2014; 1843: 2100-2113
        • Czabotar P.E.
        • Lessene G.
        • Strasser A.
        • Adams J.M.
        Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy.
        Nat Rev Mol Cell Biol. 2014; 15: 49-63
        • Moldoveanu T.
        • Follis A.V.
        • Kriwacki R.W.
        • Green D.R.
        Many players in BCL-2 family affairs.
        Trends Biochem Sci. 2014; 39: 101-111
        • Zamzami N.
        • Susin S.A.
        • Marchetti P.
        • Hirsch T.
        • Gomez-Monterrey I.
        • Castedo M.
        • et al.
        Mitochondrial control of nuclear apoptosis.
        J Exp Med. 1996; 183: 1533-1544
        • Garcia-Saez A.J.
        The secrets of the Bcl-2 family.
        Cell Death Differ. 2012; 19: 1733-1740
        • Shimizu S.
        • Konishi A.
        • Kodama T.
        • Tsujimoto Y.
        BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death.
        Proc Natl Acad Sci U S A. 2000; 97: 3100-3105
        • Delbridge A.R.
        • Strasser A.
        The BCL-2 protein family, BH3-mimetics and cancer therapy.
        Cell Death Differ. 2015; 22: 1071-1080
        • Zong W.X.
        • Lindsten T.
        • Ross A.J.
        • MacGregor G.R.
        • Thompson C.B.
        BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak.
        Genes Dev. 2001; 15: 1481-1486
        • Llambi F.
        • Moldoveanu T.
        • Tait S.W.
        • Bouchier-Hayes L.
        • Temirov J.
        • McCormick L.L.
        • et al.
        A unified model of mammalian BCL-2 protein family interactions at the mitochondria.
        Mol Cell. 2011; 44: 517-531
        • Soriano M.E.
        • Scorrano L.
        Traveling Bax and forth from mitochondria to control apoptosis.
        Cell. 2011; 145: 15-17
        • Bhatt K.
        • Feng L.
        • Pabla N.
        • Liu K.
        • Smith S.
        • Dong Z.
        Effects of targeted Bcl-2 expression in mitochondria or endoplasmic reticulum on renal tubular cell apoptosis.
        Am J Physiol Renal Physiol. 2008; 294: F499-F507
        • Czabotar P.E.
        • Westphal D.
        • Dewson G.
        • Ma S.
        • Hockings C.
        • Fairlie W.D.
        • et al.
        Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis.
        Cell. 2013; 152: 519-531
        • Juhaszova M.
        • Wang S.
        • Zorov D.B.
        • Nuss H.B.
        • Gleichmann M.
        • Mattson M.P.
        • et al.
        The identity and regulation of the mitochondrial permeability transition pore: where the known meets the unknown.
        Ann N Y Acad Sci. 2008; 1123: 197-212
        • Yethon J.A.
        • Epand R.F.
        • Leber B.
        • Epand R.M.
        • Andrews D.W.
        Interaction with a membrane surface triggers a reversible conformational change in Bax normally associated with induction of apoptosis.
        J Biol Chem. 2003; 278: 48935-48941
        • Whelan R.S.
        • Konstantinidis K.
        • Wei A.C.
        • Chen Y.
        • Reyna D.E.
        • Jha S.
        • et al.
        Bax regulates primary necrosis through mitochondrial dynamics.
        Proc Natl Acad Sci U S A. 2012; 109: 6566-6571
        • Young K.W.
        • Pinon L.G.
        • Bampton E.T.
        • Nicotera P.
        Different pathways lead to mitochondrial fragmentation during apoptotic and excitotoxic cell death in primary neurons.
        J Biochem Mol Toxicol. 2010; 24: 335-341
        • Suen D.
        • Norris K.
        • Youle R.
        Mitochondrial dynamics and apoptosis.
        Genes Dev. 2008; 22: 1577-1590
        • Kroemer G.
        • Galluzzi L.
        • Brenner C.
        Mitochondrial membrane permeabilization in cell death.
        Physiol Rev. 2007; 87: 99-163
        • Pastorino J.G.
        • Tafani M.
        • Rothman R.J.
        • Marcinkeviciute A.
        • Hoek J.B.
        • Farber J.L.
        Functional consequences of the sustained or transient activation by Bax of the mitochondrial permeability transition pore.
        J Biol Chem. 1999; 274: 31734-31739
        • Wood D.E.
        • Newcomb E.W.
        Cleavage of Bax enhances its cell death function.
        Exp Cell Res. 2000; 256: 375-382
        • Wood D.E.
        • Thomas A.
        • Devi L.A.
        • Berman Y.
        • Beavis R.C.
        • Reed J.C.
        • et al.
        Bax cleavage is mediated by calpain during drug-induced apoptosis.
        Oncogene. 1998; 17: 1069-1078
        • Nechushtan A.
        • Smith C.L.
        • Hsu Y.T.
        • Youle R.J.
        Conformation of the Bax C-terminus regulates subcellular location and cell death.
        EMBO J. 1999; 18: 2330-2341
        • Gall J.M.
        • Wong V.
        • Pimental D.R.
        • Havasi A.
        • Wang Z.
        • Pastorino J.G.
        • et al.
        Hexokinase regulates Bax-mediated mitochondrial membrane injury following ischemic stress.
        Kidney Int. 2011; 79: 1207-1216
        • Havasi A.
        • Li Z.
        • Wang Z.
        • Martin J.L.
        • Botla V.
        • Ruchalski K.
        • et al.
        Hsp27 inhibits Bax activation and apoptosis via a phosphatidylinositol 3-kinase-dependent mechanism.
        J Biol Chem. 2008; 283: 12305-12313
        • Parikh N.
        • Sade H.
        • Kurian L.
        • Sarin A.
        The Bax N terminus is required for negative regulation by the mitogen-activated protein kinase kinase and Akt signaling pathways in T cells.
        J Immunol. 2004; 173: 6220-6227
        • Wang Q.
        • Sun S.Y.
        • Khuri F.
        • Curran W.J.
        • Deng X.
        Mono- or double-site phosphorylation distinctly regulates the proapoptotic function of Bax.
        PLoS One. 2010; 5: e13393
        • Papadakis E.S.
        • Finegan K.G.
        • Wang X.
        • Robinson A.C.
        • Guo C.
        • Kayahara M.
        • et al.
        The regulation of Bax by c-Jun N-terminal protein kinase (JNK) is a prerequisite to the mitochondrial-induced apoptotic pathway.
        FEBS Lett. 2006; 580: 1320-1326
        • Tournier C.
        • Hess P.
        • Yang D.D.
        • Xu J.
        • Turner T.K.
        • Nimnual A.
        • et al.
        Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway.
        Science. 2000; 288: 870-874
        • Kim B.J.
        • Ryu S.W.
        • Song B.J.
        JNK- and p38 kinase-mediated phosphorylation of Bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells.
        J Biol Chem. 2006; 281: 21256-21265
        • Wolter K.G.
        • Hsu Y.T.
        • Smith C.L.
        • Nechushtan A.
        • Xi X.G.
        • Youle R.J.
        Movement of Bax from the cytosol to mitochondria during apoptosis.
        J Cell Biol. 1997; 139: 1281-1292
        • Ghibelli L.
        • Diederich M.
        Multistep and multitask Bax activation.
        Mitochondrion. 2010; 10: 604-613
        • Deniaud A.
        • Sharaf el dein O.
        • Maillier E.
        • Poncet D.
        • Kroemer G.
        • Lemaire C.
        • et al.
        Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis.
        Oncogene. 2008; 27: 285-299
        • Mikhailov V.
        • Mikhailova M.
        • Degenhardt K.
        • Venkatachalam M.A.
        • White E.
        • Saikumar P.
        Association of Bax and Bak homo-oligomers in mitochondria. Bax requirement for Bak reorganization and cytochrome c release.
        J Biol Chem. 2003; 278: 5367-5376
        • Mikhailov V.
        • Mikhailova M.
        • Pulkrabek D.J.
        • Dong Z.
        • Venkatachalam M.A.
        • Saikumar P.
        Bcl-2 prevents Bax oligomerization in the mitochondrial outer membrane.
        J Biol Chem. 2001; 276: 18361-18374
        • Basu A.
        • You S.A.
        • Haldar S.
        Regulation of Bcl2 phosphorylation by stress response kinase pathway.
        Int J Oncol. 2000; 16: 497-500
        • Haldar S.
        • Basu A.
        • Croce C.M.
        Serine-70 is one of the critical sites for drug-induced Bcl2 phosphorylation in cancer cells.
        Cancer Res. 1998; 58: 1609-1615
        • Zhang Z.
        • Lapolla S.M.
        • Annis M.G.
        • Truscott M.
        • Roberts G.J.
        • Miao Y.
        • et al.
        Bcl-2 homodimerization involves two distinct binding surfaces, a topographic arrangement that provides an effective mechanism for Bcl-2 to capture activated Bax.
        J Biol Chem. 2004; 279: 43920-43928
        • Kerr L.E.
        • Birse-Archbold J.L.
        • Short D.M.
        • McGregor A.L.
        • Heron I.
        • Macdonald D.C.
        • et al.
        Nucleophosmin is a novel Bax chaperone that regulates apoptotic cell death.
        Oncogene. 2007; 26: 2554-2562
        • Thompson J.
        • Finlayson K.
        • Salvo-Chirnside E.
        • MacDonald D.
        • McCulloch J.
        • Kerr L.
        • et al.
        Characterisation of the Bax-nucleophosmin interaction: the importance of the Bax C-terminus.
        Apoptosis. 2008; 13: 394-403
        • Wang Z.
        • Gall J.M.
        • Bonegio R.
        • Havasi A.
        • Illanes K.
        • Schwartz J.H.
        • et al.
        Nucleophosmin, a critical Bax cofactor in ischemia-induced cell death.
        Mol Cell Biol. 2013; 33: 1916-1924
        • Lindenboim L.
        • Blacher E.
        • Borner C.
        • Stein R.
        Regulation of stress-induced nuclear protein redistribution: a new function of Bax and Bak uncoupled from Bcl-x(L).
        Cell Death Differ. 2010; 17: 346-359
        • Ziegler U.
        • Groscurth P.
        Morphological features of cell death.
        News Physiol Sci. 2004; 19: 124-128
        • Bonegio R.
        • Lieberthal W.
        Role of apoptosis in the pathogenesis of acute renal failure.
        Curr Opin Nephrol Hypertens. 2002; 11: 301-308
        • Lieberthal W.
        • Koh J.S.
        • Levine J.S.
        Necrosis and apoptosis in acute renal failure.
        Semin Nephrol. 1998; 18: 505-518
        • Vanden Berghe T.
        • Linkermann A.
        • Jouan-Lanhouet S.
        • Walczak H.
        • Vandenabeele P.
        Regulated necrosis: the expanding network of non-apoptotic cell death pathways.
        Nat Rev Mol Cell Biol. 2014; 15: 135-147
        • Linkermann A.
        • Skouta R.
        • Himmerkus N.
        • Mulay S.R.
        • Dewitz C.
        • De Zen F.
        • et al.
        Synchronized renal tubular cell death involves ferroptosis.
        Proc Natl Acad Sci U S A. 2014; 111: 16836-16841
        • Zeiss C.J.
        The apoptosis-necrosis continuum: insights from genetically altered mice.
        Vet Pathol. 2003; 40: 481-495
        • Karbowski M.
        • Norris K.L.
        • Cleland M.M.
        • Jeong S.Y.
        • Youle R.J.
        Role of Bax and Bak in mitochondrial morphogenesis.
        Nature. 2006; 443: 658-662
        • Brooks C.
        • Wei Q.
        • Feng L.
        • Dong G.
        • Tao Y.
        • Mei L.
        • et al.
        Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with mitofusins.
        Proc Natl Acad Sci U S A. 2007; 104: 11649-11654
        • Sheridan C.
        • Delivani P.
        • Cullen S.P.
        • Martin S.J.
        Bax- or Bak-induced mitochondrial fission can be uncoupled from cytochrome C release.
        Mol Cell. 2008; 31: 570-585
        • Montessuit S.
        • Somasekharan S.P.
        • Terrones O.
        • Lucken-Ardjomande S.
        • Herzig S.
        • Schwarzenbacher R.
        • et al.
        Membrane remodeling induced by the dynamin-related protein Drp1 stimulates Bax oligomerization.
        Cell. 2010; 142: 889-901
        • Zhang Y.
        • Iqbal S.
        • O’Leary M.F.
        • Menzies K.J.
        • Saleem A.
        • Ding S.
        • et al.
        Altered mitochondrial morphology and defective protein import reveal novel roles for Bax and/or Bak in skeletal muscle.
        Am J Physiol Cell Physiol. 2013; 305: C502-C511
        • Suliman H.B.
        • Piantadosi C.A.
        Mitochondrial quality control as a therapeutic target.
        Pharmacol Rev. 2016; 68: 20-48
        • Danial N.N.
        • Gramm C.F.
        • Scorrano L.
        • Zhang C.Y.
        • Krauss S.
        • Ranger A.M.
        • et al.
        BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis.
        Nature. 2003; 424: 952-956
        • Szlyk B.
        • Braun C.R.
        • Ljubicic S.
        • Patton E.
        • Bird G.H.
        • Osundiji M.A.
        • et al.
        A phospho-BAD BH3 helix activates glucokinase by a mechanism distinct from that of allosteric activators.
        Nat Struct Mol Biol. 2014; 21: 36-42
        • Wang X.
        • Bathina M.
        • Lynch J.
        • Koss B.
        • Calabrese C.
        • Frase S.
        • et al.
        Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction.
        Genes Dev. 2013; 27: 1351-1364
        • Malia T.J.
        • Wagner G.
        NMR structural investigation of the mitochondrial outer membrane protein VDAC and its interaction with antiapoptotic Bcl-xL.
        Biochemistry. 2007; 46: 514-525
        • Vander Heiden M.G.
        • Li X.X.
        • Gottleib E.
        • Hill R.B.
        • Thompson C.B.
        • Colombini M.
        Bcl-xL promotes the open configuration of the voltage-dependent anion channel and metabolite passage through the outer mitochondrial membrane.
        J Biol Chem. 2001; 276: 19414-19419
        • Whitaker R.M.
        • Corum D.
        • Beeson C.C.
        • Schnellmann R.G.
        Mitochondrial biogenesis as a pharmacological target: a new approach to acute and chronic diseases.
        Annu Rev Pharmacol Toxicol. 2016; 56: 229-249
        • Schumer M.
        • Colombel M.C.
        • Sawczuk I.S.
        • Gobe G.
        • Connor J.
        • O’Toole K.M.
        • et al.
        Morphologic, biochemical, and molecular evidence of apoptosis during the reperfusion phase after brief periods of renal ischemia.
        Am J Pathol. 1992; 140: 831-838
        • Havasi A.
        • Borkan S.C.
        Apoptosis and acute kidney injury.
        Kidney Int. 2011; 80: 29-40
        • Emami A.
        • Schwartz J.H.
        • Borkan S.C.
        Transient ischemia or heat stress induces a cytoprotectant protein in rat kidney.
        Am J Physiol. 1991; 260: F479-F485
        • Akcetin Z.
        • Pregla R.
        • Darmer D.
        • Heynemann H.
        • Haerting J.
        • Bromme H.J.
        • et al.
        Differential expression of heat shock proteins 70-1 and 70-2 mRNA after ischemia-reperfusion injury of rat kidney.
        Urol Res. 1999; 27: 306-311
        • Van Why S.K.
        • Mann A.S.
        • Thulin G.
        • Zhu X.H.
        • Kashgarian M.
        • Siegel N.J.
        Activation of heat-shock transcription factor by graded reductions in renal ATP, in vivo, in the rat.
        J Clin Invest. 1994; 94: 1518-1523
        • Basile D.P.
        • Donohoe D.
        • Cao X.
        • Van Why S.K.
        Resistance to ischemic acute renal failure in the Brown Norway rat: a new model to study cytoprotection.
        Kidney Int. 2004; 65: 2201-2211
        • Wang Z.
        • Gall J.M.
        • Bonegio R.G.
        • Havasi A.
        • Hunt C.R.
        • Sherman M.Y.
        • et al.
        Induction of heat shock protein 70 inhibits ischemic renal injury.
        Kidney Int. 2011; 79: 861-870
        • Suzuki S.
        • Maruyama S.
        • Sato W.
        • Morita Y.
        • Sato F.
        • Miki Y.
        • et al.
        Geranylgeranylacetone ameliorates ischemic acute renal failure via induction of Hsp70.
        Kidney Int. 2005; 67: 2210-2220
        • Wang Y.
        • Knowlton A.A.
        • Christensen T.G.
        • Shih T.
        • Borkan S.C.
        Prior heat stress inhibits apoptosis in adenosine triphosphate-depleted renal tubular cells.
        Kidney Int. 1999; 55: 2224-2235
        • Chiang-Ting C.
        • Tzu-Ching C.
        • Ching-Yi T.
        • Song-Kuen S.
        • Ming-Kuen L.
        Adenovirus-mediated bcl-2 gene transfer inhibits renal ischemia/reperfusion induced tubular oxidative stress and apoptosis.
        Am J Transplant. 2005; 5: 1194-1203
        • Wei Q.
        • Dong G.
        • Chen J.K.
        • Ramesh G.
        • Dong Z.
        Bax and Bak have critical roles in ischemic acute kidney injury in global and proximal tubule-specific knockout mouse models.
        Kidney Int. 2013; 84: 138-148
        • Wei Q.
        • Yin X.M.
        • Wang M.H.
        • Dong Z.
        Bid deficiency ameliorates ischemic renal failure and delays animal death in C57BL/6 mice.
        Am J Physiol Renal Physiol. 2006; 290: F35-F42
        • Daemen M.A.
        • van ’t Veer C.
        • Denecker G.
        • Heemskerk V.H.
        • Wolfs T.G.
        • Clauss M.
        • et al.
        Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation.
        J Clin Invest. 1999; 104: 541-549
        • Tschopp J.
        Mitochondria: sovereign of inflammation?.
        Eur J Immunol. 2011; 41: 1196-1202
        • Hassoun H.T.
        • Lie M.L.
        • Grigoryev D.N.
        • Liu M.
        • Tuder R.M.
        • Rabb H.
        Kidney ischemia-reperfusion injury induces caspase-dependent pulmonary apoptosis.
        Am J Physiol Renal Physiol. 2009; 297: F125-F137
        • Doi K.
        • Rabb H.
        Impact of acute kidney injury on distant organ function: recent findings and potential therapeutic targets.
        Kidney Int. 2016; 89: 555-564
        • Rabb H.
        • Griffin M.D.
        • McKay D.B.
        • Swaminathan S.
        • Pickkers P.
        • Rosner M.H.
        • et al.
        Inflammation in AKI: current understanding, key questions, and knowledge gaps.
        J Am Soc Nephrol. 2016; 27: 371-379
        • Frehlick L.J.
        • Eirin-Lopez J.M.
        • Ausio J.
        New insights into the nucleophosmin/nucleoplasmin family of nuclear chaperones.
        Bioessays. 2007; 29: 49-59
        • Sarko D.
        • Beijer B.
        • Garcia Boy R.
        • Nothelfer E.M.
        • Leotta K.
        • Eisenhut M.
        • et al.
        The pharmacokinetics of cell-penetrating peptides.
        Mol Pharm. 2010; 7: 2224-2231
        • Szeto H.H.
        • Liu S.
        • Soong Y.
        • Wu D.
        • Darrah S.F.
        • Cheng F.Y.
        • et al.
        Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic kidney injury.
        J Am Soc Nephrol. 2011; 22: 1041-1052
        • El Mouedden M.
        • Laurent G.
        • Mingeot-Leclercq M.P.
        • Tulkens P.M.
        Gentamicin-induced apoptosis in renal cell lines and embryonic rat fibroblasts.
        Toxicol Sci. 2000; 56: 229-239
        • Ozaki N.
        • Matheis K.A.
        • Gamber M.
        • Feidl T.
        • Nolte T.
        • Kalkuhl A.
        • et al.
        Identification of genes involved in gentamicin-induced nephrotoxicity in rats--a toxicogenomic investigation.
        Exp Toxicol Pathol. 2010; 62: 555-566
        • Shin H.S.
        • Yu M.
        • Kim M.
        • Choi H.S.
        • Kang D.H.
        Renoprotective effect of red ginseng in gentamicin-induced acute kidney injury.
        Lab Invest. 2014; 94: 1147-1160
        • Kalkan Y.
        • Kapakin K.A.
        • Kara A.
        • Atabay T.
        • Karadeniz A.
        • Simsek N.
        • et al.
        Protective effect of Panax ginseng against serum biochemical changes and apoptosis in kidney of rats treated with gentamicin sulphate.
        J Mol Histol. 2012; 43: 603-613
        • Quiros Y.
        • Vicente-Vicente L.
        • Morales A.I.
        • Lopez-Novoa J.M.
        • Lopez-Hernandez F.J.
        An integrative overview on the mechanisms underlying the renal tubular cytotoxicity of gentamicin.
        Toxicol Sci. 2011; 119: 245-256
        • Goodman A.I.
        • Olszanecki R.
        • Yang L.M.
        • Quan S.
        • Li M.
        • Omura S.
        • et al.
        Heme oxygenase-1 protects against radiocontrast-induced acute kidney injury by regulating anti-apoptotic proteins.
        Kidney Int. 2007; 72: 945-953
        • Xiong X.L.
        • Jia R.H.
        • Yang D.P.
        • Ding G.H.
        Irbesartan attenuates contrast media-induced NRK-52E cells apoptosis.
        Pharmacol Res. 2006; 54: 253-260
        • Duan S.
        • Zhou X.
        • Liu F.
        • Peng Y.
        • Chen Y.
        • Pei Y.
        • et al.
        Comparative cytotoxicity of high-osmolar and low-osmolar contrast media on HKCs in vitro.
        J Nephrol. 2006; 19: 717-724
        • Wu C.T.
        • Weng T.I.
        • Chen L.P.
        • Chiang C.K.
        • Liu S.H.
        Involvement of caspase-12-dependent apoptotic pathway in ionic radiocontrast urografin-induced renal tubular cell injury.
        Toxicol Appl Pharmacol. 2013; 266: 167-175
        • Yano T.
        • Itoh Y.
        • Kubota T.
        • Sendo T.
        • Koyama T.
        • Fujita T.
        • et al.
        A prostacyclin analog prevents radiocontrast nephropathy via phosphorylation of cyclic AMP response element binding protein.
        Am J Pathol. 2005; 166: 1333-1342
        • Yano T.
        • Itoh Y.
        • Sendo T.
        • Kubota T.
        • Oishi R.
        Cyclic AMP reverses radiocontrast media-induced apoptosis in LLC-PK1 cells by activating A kinase/PI3 kinase.
        Kidney Int. 2003; 64: 2052-2063
        • Lau A.H.
        Apoptosis induced by cisplatin nephrotoxic injury.
        Kidney Int. 1999; 56: 1295-1298
        • Wei Q.
        • Dong G.
        • Franklin J.
        • Dong Z.
        The pathological role of Bax in cisplatin nephrotoxicity.
        Kidney Int. 2007; 72: 53-62
        • McDuffie J.E.
        • Ma J.Y.
        • Sablad M.
        • Sonee M.
        • Varacallo L.
        • Louden C.
        • et al.
        Time course of renal proximal tubule injury, reversal, and related biomarker changes in rats following cisplatin administration.
        Int J Toxicol. 2013; 32: 251-260
        • Faubel S.
        • Ljubanovic D.
        • Reznikov L.
        • Somerset H.
        • Dinarello C.A.
        • Edelstein C.L.
        Caspase-1-deficient mice are protected against cisplatin-induced apoptosis and acute tubular necrosis.
        Kidney Int. 2004; 66: 2202-2213
        • Katagiri D.
        • Hamasaki Y.
        • Doi K.
        • Okamoto K.
        • Negishi K.
        • Nangaku M.
        • et al.
        Protection of glucagon-like peptide-1 in cisplatin-induced renal injury elucidates gut-kidney connection.
        J Am Soc Nephrol. 2013; 24: 2034-2043
        • Lieberthal W.
        • Triaca V.
        • Levine J.
        Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis vs. necrosis.
        Am J Physiol. 1996; 270: F700-F708
        • Sancho-Martinez S.M.
        • Piedrafita F.J.
        • Cannata-Andia J.B.
        • Lopez-Novoa J.M.
        • Lopez-Hernandez F.J.
        Necrotic concentrations of cisplatin activate the apoptotic machinery but inhibit effector caspases and interfere with the execution of apoptosis.
        Toxicol Sci. 2011; 122: 73-85
        • Jiang M.
        • Pabla N.
        • Murphy R.F.
        • Yang T.
        • Yin X.M.
        • Degenhardt K.
        • et al.
        Nutlin-3 protects kidney cells during cisplatin therapy by suppressing Bax/Bak activation.
        J Biol Chem. 2007; 282: 2636-2645
        • Kaushal G.P.
        • Kaushal V.
        • Hong X.
        • Shah S.V.
        Role and regulation of activation of caspases in cisplatin-induced injury to renal tubular epithelial cells.
        Kidney Int. 2001; 60: 1726-1736
        • Galluzzi L.
        • Morselli E.
        • Vitale I.
        • Kepp O.
        • Senovilla L.
        • Criollo A.
        • et al.
        miR-181a and miR-630 regulate cisplatin-induced cancer cell death.
        Cancer Res. 2010; 70: 1793-1803
        • Park M.S.
        • De Leon M.
        • Devarajan P.
        Cisplatin induces apoptosis in LLC-PK1 cells via activation of mitochondrial pathways.
        J Am Soc Nephrol. 2002; 13: 858-865
        • Zhou H.
        • Kato A.
        • Yasuda H.
        • Odamaki M.
        • Itoh H.
        • Hishida A.
        The induction of heat shock protein-72 attenuates cisplatin-induced acute renal failure in rats.
        Pflugers Arch. 2003; 446: 116-124
        • Kim Y.K.
        • Kim H.J.
        • Kwon C.H.
        • Kim J.H.
        • Woo J.S.
        • Jung J.S.
        • et al.
        Role of ERK activation in cisplatin-induced apoptosis in OK renal epithelial cells.
        J Appl Toxicol. 2005; 25: 374-382
        • Yang C.
        • Kaushal V.
        • Shah S.V.
        • Kaushal G.P.
        Mcl-1 is downregulated in cisplatin-induced apoptosis, and proteasome inhibitors restore Mcl-1 and promote survival in renal tubular epithelial cells.
        Am J Physiol Renal Physiol. 2007; 292: F1710-F1717
        • Tsuruya K.
        • Ninomiya T.
        • Tokumoto M.
        • Hirakawa M.
        • Masutani K.
        • Taniguchi M.
        • et al.
        Direct involvement of the receptor-mediated apoptotic pathways in cisplatin-induced renal tubular cell death.
        Kidney Int. 2003; 63: 72-82
        • Xu Y.
        • Ma H.
        • Shao J.
        • Wu J.
        • Zhou L.
        • Zhang Z.
        • et al.
        A role for tubular necroptosis in cisplatin-induced AKI.
        J Am Soc Nephrol. 2015; 26: 2647-2658
        • Chen G.
        • Cheng X.
        • Zhao M.
        • Lin S.
        • Lu J.
        • Kang J.
        • et al.
        RIP1-dependent Bid cleavage mediates TNFalpha-induced but caspase-3-independent cell death in L929 fibroblastoma cells.
        Apoptosis. 2015; 20: 92-109
        • Karch J.
        • Kanisicak O.
        • Brody M.J.
        • Sargent M.A.
        • Michael D.M.
        • Molkentin J.D.
        Necroptosis interfaces with MOMP and the MPTP in mediating cell death.
        PLoS One. 2015; 10: e0130520
        • Thornton C.
        • Hagberg H.
        Role of mitochondria in apoptotic and necroptotic cell death in the developing brain.
        Clin Chim Acta. 2015; 451: 35-38
        • Tischner D.
        • Manzl C.
        • Soratroi C.
        • Villunger A.
        • Krumschnabel G.
        Necrosis-like death can engage multiple pro-apoptotic Bcl-2 protein family members.
        Apoptosis. 2012; 17: 1197-1209
        • Goumenos D.S.
        • Tsamandas A.C.
        • Kalliakmani P.
        • Tsakas S.
        • Sotsiou F.
        • Bonikos D.S.
        • et al.
        Expression of apoptosis-related proteins bcl-2 and bax along with transforming growth factor (TGF-beta1) in the kidney of patients with glomerulonephritides.
        Ren Fail. 2004; 26: 361-367
        • Yang B.
        • Johnson T.S.
        • Thomas G.L.
        • Watson P.F.
        • Wagner B.
        • Furness P.N.
        • et al.
        A shift in the Bax/Bcl-2 balance may activate caspase-3 and modulate apoptosis in experimental glomerulonephritis.
        Kidney Int. 2002; 62: 1301-1313
        • Yang B.
        • Johnson T.S.
        • Thomas G.L.
        • Watson P.F.
        • Wagner B.
        • Nahas A.M.
        Apoptosis and caspase-3 in experimental anti-glomerular basement membrane nephritis.
        J Am Soc Nephrol. 2001; 12: 485-495
        • Seery J.P.
        • Cattell V.
        • Watt F.M.
        Cutting edge: amelioration of kidney disease in a transgenic mouse model of lupus nephritis by administration of the caspase inhibitor carbobenzoxy-valyl-alanyl-aspartyl-(beta-o-methyl)-fluoromethylketone.
        J Immunol. 2001; 167: 2452-2455
        • Green D.R.
        • Oguin T.H.
        • Martinez J.
        The clearance of dying cells: table for two.
        Cell Death Differ. 2016; (Epub ahead of print)
        • Arif E.
        • Rathore Y.S.
        • Kumari B.
        • et al.
        Podocytes as a therapeutic target.
        Ann Clin Exp Hypertension. 2013; 1: 1004
        • Greka A.
        • Mundel P.
        Cell biology and pathology of podocytes.
        Annu Rev Physiol. 2012; 74: 299-323
        • Jung D.S.
        • Lee S.H.
        • Kwak S.J.
        • Li J.J.
        • Kim do H.
        • Nam B.Y.
        • et al.
        Apoptosis occurs differentially according to glomerular size in diabetic kidney disease.
        Nephrol Dial Transplant. 2012; 27: 259-266
        • Lee S.H.
        • Moon S.J.
        • Paeng J.
        • Kang H.Y.
        • Nam B.Y.
        • Kim S.
        • et al.
        Podocyte hypertrophy precedes apoptosis under experimental diabetic conditions.
        Apoptosis. 2015; 20: 1056-1071
        • Lv W.
        • Zhang Y.
        • Guan G.
        • Li P.
        • Wang J.
        • Qi D.
        Mycophenolate mofetil and valsartan inhibit podocyte apoptosis in streptozotocin-induced diabetic rats.
        Pharmacology. 2013; 92: 227-234
        • Levine B.
        • Kroemer G.
        Autophagy in the pathogenesis of disease.
        Cell. 2008; 132: 27-42
        • Pattingre S.
        • Tassa A.
        • Qu X.
        • Garuti R.
        • Liang X.H.
        • Mizushima N.
        • et al.
        Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy.
        Cell. 2005; 122: 927-939
        • Jiang M.
        • Wei Q.
        • Dong G.
        • Komatsu M.
        • Su Y.
        • Dong Z.
        Autophagy in proximal tubules protects against acute kidney injury.
        Kidney Int. 2012; 82: 1271-1283
        • Rosen S.
        • Heyman S.N.
        Difficulties in understanding human "acute tubular necrosis": limited data and flawed animal models.
        Kidney Int. 2001; 60: 1220-1224
        • Heyman S.N.
        • Rosenberger C.
        • Rosen S.
        Acute kidney injury: lessons from experimental models.
        Contrib Nephrol. 2011; 169: 286-296
        • Linkermann A.
        • Chen G.
        • Dong G.
        • Kunzendorf U.
        • Krautwald S.
        • Dong Z.
        Regulated cell death in AKI.
        J Am Soc Nephrol. 2014; 25: 2689-2701
        • Fayaz S.M.
        • Suvanish Kumar V.S.
        • Rajanikant G.K.
        Necroptosis: who knew there were so many interesting ways to die?.
        CNS Neurol Disord Drug Targets. 2014; 13: 42-51
        • Melino G.
        • Knight R.A.
        • Nicotera P.
        How many ways to die? How many different models of cell death?.
        Cell Death Differ. 2005; 12: 1457-1462
        • Tharaux P.L.
        • Huber T.B.
        How many ways can a podocyte die?.
        Semin Nephrol. 2012; 32: 394-404
        • Wu D.
        • Chen L.
        Ferroptosis: a novel cell death form will be a promising therapy target for diseases.
        Acta Biochim Biophys Sin (Shanghai). 2015; 47: 857-859
        • Xie Y.
        • Hou W.
        • Song X.
        • Yu Y.
        • Huang J.
        • Sun X.
        • et al.
        Ferroptosis: process and function.
        Cell Death Differ. 2016; 23: 369-379
        • Yang W.S.
        • Stockwell B.R.
        Ferroptosis: death by lipid peroxidation.
        Trends Cell Biol. 2016; 26: 165-176
        • Conrad M.
        • Angeli J.P.
        • Vandenabeele P.
        • Stockwell B.R.
        Regulated necrosis: disease relevance and therapeutic opportunities.
        Nat Rev Drug Discov. 2016; (Epub ahead of print)
        • Galluzzi L.
        • Kepp O.
        • Krautwald S.
        • Kroemer G.
        • Linkermann A.
        Molecular mechanisms of regulated necrosis.
        Semin Cell Dev Biol. 2014; 35: 24-32
        • Linkermann A.
        Nonapoptotic cell death in acute kidney injury and transplantation.
        Kidney Int. 2016; 89: 46-57
        • Scott R.P.
        • Quaggin S.E.
        Review series: the cell biology of renal filtration.
        J Cell Biol. 2015; 209: 199-210
        • Bouchier-Hayes L.
        • Lartigue L.
        • Newmeyer D.D.
        Mitochondria: pharmacological manipulation of cell death.
        J Clin Invest. 2005; 115: 2640-2647
        • Green D.R.
        • Victor B.
        The pantheon of the fallen: why are there so many forms of cell death?.
        Trends Cell Biol. 2012; 22: 555-556
        • Lieberthal W.
        • Menza S.A.
        • Levine J.S.
        Graded ATP depletion can cause necrosis or apoptosis of cultured mouse proximal tubular cells.
        Am J Physiol. 1998; 274: F315-F327
        • Eguchi Y.
        • Shimizu S.
        • Tsujimoto Y.
        Intracellular ATP levels determine cell death fate by apoptosis or necrosis.
        Cancer Res. 1997; 57: 1835-1840
        • Nicotera P.
        • Leist M.
        • Ferrando-May E.
        Apoptosis and necrosis: different execution of the same death.
        Biochem Soc Symp. 1999; 66: 69-73
        • Hirsch T.
        • Marchetti P.
        • Susin S.A.
        • Dallaporta B.
        • Zamzami N.
        • Marzo I.
        • et al.
        The apoptosis-necrosis paradox. Apoptogenic proteases activated after mitochondrial permeability transition determine the mode of cell death.
        Oncogene. 1997; 15: 1573-1581
        • Qian T.
        • Herman B.
        • Lemasters J.J.
        The mitochondrial permeability transition mediates both necrotic and apoptotic death of hepatocytes exposed to Br-A23187.
        Toxicol Appl Pharmacol. 1999; 154: 117-125
        • Tsujimoto Y.
        • Shimizu S.
        • Eguchi Y.
        • Kamiike W.
        • Matsuda H.
        Bcl-2 and Bcl-xL block apoptosis as well as necrosis: possible involvement of common mediators in apoptotic and necrotic signal transduction pathways.
        Leukemia. 1997; 11: 380-382
        • Ishido M.
        • Ohtsubo R.
        • Adachi T.
        • Kunimoto M.
        Attenuation of both apoptotic and necrotic actions of cadmium by Bcl-2.
        Environ Health Perspect. 2002; 110: 37-42
        • Kaminski M.
        • Niemczyk E.
        • Masaoka M.
        • Karbowski M.
        • Hallmann A.
        • Kedzior J.
        • et al.
        The switch mechanism of the cell death mode from apoptosis to necrosis in menadione-treated human osteosarcoma cell line 143B cells.
        Microsc Res Tech. 2004; 64: 255-258
        • Lu C.Y.
        • Hartono J.
        • Senitko M.
        • Chen J.
        The inflammatory response to ischemic acute kidney injury: a result of the ’right stuff’ in the ’wrong place’?.
        Curr Opin Nephrol Hypertens. 2007; 16: 83-89
        • Lee S.
        • Huen S.
        • Nishio H.
        • Nishio S.
        • Lee H.K.
        • Choi B.S.
        • et al.
        Distinct macrophage phenotypes contribute to kidney injury and repair.
        J Am Soc Nephrol. 2011; 22: 317-326
        • Nicotera P.
        • Melino G.
        Regulation of the apoptosis-necrosis switch.
        Oncogene. 2004; 23: 2757-2765
        • Kaczmarek A.
        • Vandenabeele P.
        • Krysko D.V.
        Necroptosis: the release of damage-associated molecular patterns and its physiological relevance.
        Immunity. 2013; 38: 209-223
        • Karch J.
        • Kwong J.Q.
        • Burr A.R.
        • Sargent M.A.
        • Elrod J.W.
        • Peixoto P.M.
        • et al.
        Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice.
        Elife. 2013; 2: e00772
        • Chung S.D.
        • Lai T.Y.
        • Chien C.T.
        • Yu H.J.
        Activating Nrf-2 signaling depresses unilateral ureteral obstruction-evoked mitochondrial stress-related autophagy, apoptosis and pyroptosis in kidney.
        PLoS One. 2012; 7: e47299
        • Patel V.A.
        • Massenburg D.
        • Vujicic S.
        • Feng L.
        • Tang M.
        • Litbarg N.
        • et al.
        Apoptotic cells activate AMP-activated protein kinase (AMPK) and inhibit epithelial cell growth without change in intracellular energy stores.
        J Biol Chem. 2015; 290: 22352-22369
        • Kelly K.J.
        Distant effects of experimental renal ischemia/reperfusion injury.
        J Am Soc Nephrol. 2003; 14: 1549-1558
        • Kelly K.J.
        Acute renal failure: much more than a kidney disease.
        Semin Nephrol. 2006; 26: 105-113
        • Grigoryev D.N.
        • Liu M.
        • Hassoun H.T.
        • Cheadle C.
        • Barnes K.C.
        • Rabb H.
        The local and systemic inflammatory transcriptome after acute kidney injury.
        J Am Soc Nephrol. 2008; 19: 547-558
        • White L.E.
        • Cui Y.
        • Shelak C.M.
        • Lie M.L.
        • Hassoun H.T.
        Lung endothelial cell apoptosis during ischemic acute kidney injury.
        Shock. 2012; 38: 320-327
        • Wen X.
        • Murugan R.
        • Peng Z.
        • Kellum J.A.
        Pathophysiology of acute kidney injury: a new perspective.
        Contrib Nephrol. 2010; 165: 39-45