Advertisement

Sex-Based Differences in Risk Factors and Complications of Chronic Kidney Disease

      Summary

      Globally, females are ∼30% more likely to have pre-dialysis chronic kidney disease (CKD) than males for reasons that are not fully understood. CKD is associated with numerous adverse health outcomes which makes understanding and working to eradicating sex based disparities in CKD prevalence essential. This review maps both what is known, and what is unknown, about the way sex and gender impacts (1) the epidemiology and risk factors for CKD including age, diabetes, hypertension, obesity, smoking, and cerebrovascular disease, and (2) the complications from CKD including kidney disease progression, cardiovascular disease, CKD mineral and bone disorders, anaemia, quality-of-life, cancer and mortality. This mapping can be used to guide future research.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Nephrology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      REFERENCES

        • Hill NR
        • Fatoba ST
        • Oke JL
        • et al.
        Global prevalence of chronic kidney disease - a systematic review and meta-analysis.
        PLoS One. 2016; 11e0158765https://doi.org/10.1371/journal.pone.0158765
        • GBD Chronic Kidney Disease Collaboration
        Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.
        Lancet. 2020; 395: 709-733https://doi.org/10.1016/S0140-6736(20)30045-3
        • Couser WG
        • Remuzzi G
        • Mendis S
        • Tonelli M.
        The contribution of chronic kidney disease to the global burden of major noncommunicable diseases.
        Kidney Int. 2011; 80: 1258-1270https://doi.org/10.1038/ki.2011.368
        • Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group
        KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease.
        Kidney Int. 2013; 3: 1-150
        • Cockcroft DW
        • Gault MH.
        Prediction of creatinine clearance from serum creatinine.
        Nephron. 1976; 16: 31-41https://doi.org/10.1159/000180580
        • Levey AS
        • Bosch JP
        • Lewis JB
        • Greene T
        • Rogers N
        • Roth D.
        A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group.
        Ann Intern Med. 1999; 130: 461-470https://doi.org/10.7326/0003-4819-130-6-199903160-00002
        • Froissart M
        • Rossert J
        • Jacquot C
        • Paillard M
        • Houillier P.
        Predictive performance of the modification of diet in renal disease and Cockcroft-Gault equations for estimating renal function.
        J Am Soc Nephrol. 2005; 16: 763-773https://doi.org/10.1681/ASN.2004070549
        • Cirillo M
        • Anastasio P
        • De Santo NG.
        Relationship of gender, age, and body mass index to errors in predicted kidney function.
        Nephrol Dial Transplant. 2005; 20: 1791-1798https://doi.org/10.1093/ndt/gfh962
        • Florkowski CM
        • Chew-Harris JS.
        Methods of estimating GFR - different equations including CKD-EPI.
        Clin Biochem Rev. 2011; 32: 75-79
        • Levey A
        • Stevens L
        • Schmid C
        • et al.
        A new equation to estimate glomerular filtration rate.
        Ann Intern Med. 2009; 150: 604-612
        • Inker LA
        • Levey AS
        • Tighiouart H
        • et al.
        Performance of glomerular filtration rate estimating equations in a community-based sample of Blacks and Whites: the multiethnic study of atherosclerosis.
        Nephrol Dial Transplant. 2018; 33: 417-425https://doi.org/10.1093/ndt/gfx042
        • Wetzels JF
        • Willems HL
        • den Heijer M.
        Age- and gender-specific reference values of estimated glomerular filtration rate in a Caucasian population: results of the Nijmegen Biomedical Study.
        Kidney Int. 2008; 73: 657-658https://doi.org/10.1038/sj.ki.5002755
        • Mattix H
        • Hsu C
        • Shaykevich S
        • Curhan G.
        Use of the albumin/creatinine ratio to detect microalbuminuria: implications of sex and race.
        J Am Soc Nephrol. 2002; 14: 1034-1039
        • Johnson DW
        • Jones GR
        • Mathew TH
        • et al.
        Chronic kidney disease and measurement of albuminuria or proteinuria: a position statement.
        Med J Aust. 2012; 197: 224-225https://doi.org/10.5694/mja11.11468
        • Mills KT
        • Xu Y
        • Zhang W
        • et al.
        A systematic analysis of worldwide population-based data on the global burden of chronic kidney disease in 2010.
        Kidney Int. 2015; 88: 950-957https://doi.org/10.1038/ki.2015.230
        • Xie Y
        • Bowe B
        • Mokdad AH
        • et al.
        Analysis of the Global Burden of Disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016.
        Kidney Int. 2018; 94: 567-581https://doi.org/10.1016/j.kint.2018.04.011
        • Schmitt R
        • Melk A.
        Molecular mechanisms of renal aging.
        Kidney Int. 2017; 92: 569-579https://doi.org/10.1016/j.kint.2017.02.036
        • Glassock RJ
        • Rule AD.
        Aging and the kidneys: anatomy, physiology and consequences for defining chronic kidney disease.
        Nephron. 2016; 134: 25-29https://doi.org/10.1159/000445450
        • Levin A
        • Tonelli M
        • Bonventre J
        • et al.
        Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy.
        Lancet. 2017; 390: 1888-1917https://doi.org/10.1016/S0140-6736(17)30788-2
        • McClellan WM
        • Flanders WD.
        Risk factors for progressive chronic kidney disease.
        J Am Soc Nephrol. 2003; 14: S65-S70https://doi.org/10.1097/01.asn.0000070147.10399.9e
        • Alicic RZ
        • Rooney MT
        • Tuttle KR.
        Diabetic kidney disease: challenges, progress, and possibilities.
        Clin J Am Soc Nephrol. 2017; 12: 2032-2045https://doi.org/10.2215/CJN.11491116
      1. White SL. Chronic Kidney Disease, Diabetes & Cardiovascular Disease: Evidence Report 2021. Kidney Health Australia, Melbourne, Australia, August 2020.

        • Hovind P
        • Tarnow L
        • Rossing P
        • et al.
        Predictors for the development of microalbuminuria and macroalbuminuria in patients with type 1 diabetes: inception cohort study.
        BMJ. 2004; 328: 1105https://doi.org/10.1136/bmj.38070.450891.FE
        • Orchard TJ
        • Dorman JS
        • Maser RE
        • et al.
        Prevalence of complications in IDDM by sex and duration. Pittsburgh Epidemiology of Diabetes Complications Study II.
        Diabetes. 1990; 39: 1116-1124https://doi.org/10.2337/diab.39.9.1116
        • Raile K
        • Galler A
        • Hofer S
        • et al.
        Diabetic nephropathy in 27,805 children, adolescents, and adults with type 1 diabetes: effect of diabetes duration, A1C, hypertension, dyslipidemia, diabetes onset, and sex.
        Diabetes Care. 2007; 30: 2523-2528https://doi.org/10.2337/dc07-0282
        • Shen Y
        • Cai R
        • Sun J
        • et al.
        Diabetes mellitus as a risk factor for incident chronic kidney disease and end-stage renal disease in women compared with men: a systematic review and meta-analysis.
        Endocrine. 2017; 55: 66-76
      2. US Renal Data System. 2020 USRDS annual data report: epidemiology of kidney disease in the United States. 2020. Accessed August 3, 2022. https://adr.usrds.org/2020

        • Weldegiorgis M
        • Woodward M.
        The impact of hypertension on chronic kidney disease and end-stage renal disease is greater in men than women: a systematic review and meta-analysis.
        BMC Nephrol. 2020; 21: 506
        • Garcia-Carro C
        • Vergara A
        • Bermejo S
        • Azancot MA
        • Sellares J
        • Soler MJ.
        A nephrologist perspective on obesity: from kidney injury to clinical management.
        Front Med (Lausanne). 2021; 8655871https://doi.org/10.3389/fmed.2021.655871
        • Kovesdy C
        • Furth S
        • Zoccali C
        on behalf of the World Kidney Day Steering Committee. Obesity and kidney disease: hidden consequences of the epidemic.
        Can J Kidney Health Dis. 2017; 4
      3. Kidney Health Australia. Obesity and chronic kidney disease: the hidden impact. Accessed March 1, 2022. https://kidney.org.au/uploads/resources/kidney-health-australia-report-obesity-and-chronic-kidney-disease-the-hidden-impact_06.03.17.pdf

        • Wang Y
        • Chen X
        • Song Y
        • Caballero B
        • Cheskin L.
        Association between obesity and kidney disease: a systematic review and meta-analysis.
        Kidney Int. 2008; 73: 19-33
        • Memarian E
        • Nilsson PM
        • Zia I
        • Christensson A
        • Engstrom G
        The risk of chronic kidney disease in relation to anthropometric measures of obesity: a Swedish cohort study.
        BMC Nephrol. 2021; 22: 330https://doi.org/10.1186/s12882-021-02531-7
        • He Y
        • Li F
        • Wang F
        • Ma X
        • Zhao X
        • Zeng Q.
        The association of chronic kidney disease and waist circumference and waist-to-height ratio in Chinese urban adults.
        Medicine. 2016; 95: e3769
        • Wyld M
        • Webster AC.
        Chronic kidney disease is a risk factor for stroke.
        J Stroke Cerebrovasc Dis. 2021; 30105730
        • Lu R
        • Kiernan MC
        • Murray A
        • Rosner MH
        • Ronco C.
        Kidney-brain crosstalk in the acute and chronic setting.
        Nat Rev Nephrol. 2015; 11: 707-719https://doi.org/10.1038/nrneph.2015.131
        • Wu CL
        • Tsai CC
        • Kor CT
        • et al.
        Stroke and risks of development and progression of kidney diseases and end-stage renal disease: a nationwide population-based cohort study.
        PLoS One. 2016; 11e0158533https://doi.org/10.1371/journal.pone.0158533
        • Fang MC
        • Singer DE
        • Chang Y
        • et al.
        Gender differences in the risk of ischemic stroke and peripheral embolism in atrial fibrillation: the AnTicoagulation and Risk factors In Atrial fibrillation (ATRIA) study.
        Circulation. 2005; 112: 1687-1691https://doi.org/10.1161/circulationaha.105.553438
        • Reeves MJ
        • Bushnell CD
        • Howard G
        • et al.
        Sex differences in stroke: epidemiology, clinical presentation, medical care, and outcomes.
        Lancet Neurol. 2008; 7: 915-926https://doi.org/10.1016/S1474-4422(08)70193-5
        • Hallan S
        • Orth S.
        Smoking is a risk factor in the progression to kidney failure.
        Kidney Int. 2011; 80: 516-523
        • Jo W
        • Lee S
        • Joo YS
        • et al.
        Association of smoking with incident CKD risk in the general population: a community-based cohort study.
        PLoS One. 2020; 15e0238111https://doi.org/10.1371/journal.pone.0238111
        • Briganti E
        • Branley P
        • Chadban S
        • et al.
        Smoking is associated with renal impairment and proteinuria in the normal population: the AusDiab kidney study. Australian Diabetes, Obesity and Lifestyle Study.
        Am J Kidney Dis. 2002; 40: 704-712
        • Xia J
        • Wang L
        • Ma Z
        • et al.
        Cigarette smoking and chronic kidney disease in the general population: a systematic review and meta-analysis of prospective cohort studies.
        Nephrol Dial Transplant. 2017; 32: 475-487https://doi.org/10.1093/ndt/gfw452
      4. Office of Disease Prevention and Health Promotion. Disparities. Accessed March 1, 2022. https://www.healthypeople.gov/2020/about/foundation-health-measures/Disparities

      5. World Health Organisation. Social determinants of health: key concepts. Accessed January 3, 2022. https://www.who.int/news-room/questions-and-answers/item/social-determinants-of-health-key-concepts

        • Clark-Cutaia MN
        • Rivera E
        • Iroegbu C
        • Squires A.
        Disparities in chronic kidney disease-the state of the evidence.
        Curr Opin Nephrol Hypertens. 2021; 30: 208-214https://doi.org/10.1097/MNH.0000000000000688
      6. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.
        Lancet. 2020; 395: 709-733https://doi.org/10.1016/s0140-6736(20)30045-3
        • Thurlow JS
        • Joshi M
        • Yan G
        • et al.
        Global epidemiology of end-stage kidney disease and disparities in kidney replacement therapy.
        Am J Nephrol. 2021; 52: 98-107https://doi.org/10.1159/000514550
        • Ozieh MN
        • Garacci E
        • Walker RJ
        • Palatnik A
        • Egede LE.
        The cumulative impact of social determinants of health factors on mortality in adults with diabetes and chronic kidney disease.
        BMC Nephrol. 2021; 22: 76https://doi.org/10.1186/s12882-021-02277-2
      7. ANZDATA Registry. 43rd report, Kidney Transplantation Australia and New Zealand Dialysis and Transplant Registry. 2022. Accessed August 3, 2022. http://www.anzdata.org.au

      8. Australian Government Productivity Commission. Strong economic participation and development of Aboriginal and Torres Strait Islander people and communities. Accessed March 1, 2022. https://www.pc.gov.au/closing-the-gap-data/dashboard/socioeconomic/outcome-area8

        • Vart P
        • van Zon SKR
        • Gansevoort RT
        • Bultmann U
        • Reijneveld SA.SES
        chronic kidney disease, and race in the U.S.: a systematic review and meta-analysis.
        Am J Prev Med. 2017; 53: 730-739https://doi.org/10.1016/j.amepre.2017.06.036
        • Ritte RE
        • Lawton P
        • Hughes JT
        • et al.
        Chronic kidney disease and socio-economic status: a cross sectional study.
        Ethn Health. 2020; 25: 93-109https://doi.org/10.1080/13557858.2017.1395814
        • Fedewa SA
        • McClellan WM
        • Judd S
        • Gutiérrez OM
        • Crews DC.
        The association between race and income on risk of mortality in patients with moderate chronic kidney disease.
        BMC Nephrol. 2014; 15: 136https://doi.org/10.1186/1471-2369-15-136
        • Cobo G
        • Hecking M
        • Port FK
        • et al.
        Sex and gender differences in chronic kidney disease: progression to end-stage renal disease and haemodialysis.
        Clin Sci (Lond). 2016; 130: 1147-1163https://doi.org/10.1042/CS20160047
        • Bolignano D
        • Mattace-Raso F
        • Sijbrands EJ
        • Zoccali C.
        The aging kidney revisited: a systematic review.
        Ageing Res Rev. 2014; 14: 65-80https://doi.org/10.1016/j.arr.2014.02.003
        • Evans M
        • Fryzek JP
        • Elinder CG
        • et al.
        The natural history of chronic renal failure: results from an unselected, population-based, inception cohort in Sweden.
        Am J Kidney Dis. 2005; 46: 863-870https://doi.org/10.1053/j.ajkd.2005.07.040
        • Halbesma N
        • Brantsma AH
        • Bakker SJ
        • et al.
        Gender differences in predictors of the decline of renal function in the general population.
        Kidney Int. 2008; 74: 505-512https://doi.org/10.1038/ki.2008.200
        • Neugarten J
        • Acharya A
        • Silbiger SR.
        Effect of gender on the progression of nondiabetic renal disease: a meta-analysis.
        J Am Soc Nephrol. 2000; 11: 319-329https://doi.org/10.1681/ASN.V112319
        • Jafar TH
        • Schmid CH
        • Stark PC
        • et al.
        The rate of progression of renal disease may not be slower in women compared with men: a patient-level meta-analysis.
        Nephrol Dial Transplant. 2003; 18: 2047-2053https://doi.org/10.1093/ndt/gfg317
        • Turin TC
        • James M
        • Ravani P
        • et al.
        Proteinuria and rate of change in kidney function in a community-based population.
        J Am Soc Nephrol. 2013; 24: 1661-1667https://doi.org/10.1681/ASN.2012111118
        • Morton RL
        • Turner RM
        • Howard K
        • Snelling P
        • Webster AC.
        Patients who plan for conservative care rather than dialysis: a national observational study in Australia.
        Am J Kidney Dis. 2012; 59: 419-427https://doi.org/10.1053/j.ajkd.2011.08.024
        • Antlanger M
        • Noordzij M
        • van de Luijtgaarden M
        • et al.
        Sex differences in kidney replacement therapy initiation and maintenance.
        Clin J Am Soc Nephrol. 2019; 14: 1616-1625https://doi.org/10.2215/CJN.04400419
        • De La Mata NL
        • Rosales B
        • MacLeod G
        • et al.
        Sex differences in mortality among binational cohort of people with chronic kidney disease: population based data linkage study.
        BMJ. 2021; 375e068247https://doi.org/10.1136/BMJ-2021-068247
        • Fanelli C
        • Delle H
        • Cavaglieri RC
        • Dominguez WV
        • Noronha IL.
        Gender differences in the progression of experimental chronic kidney disease induced by chronic nitric oxide inhibition.
        Biomed Res Int. 2017; (2017)2159739https://doi.org/10.1155/2017/2159739
        • Valdivielso JM
        • Jacobs-Cacha C
        • Soler MJ.
        Sex hormones and their influence on chronic kidney disease.
        Curr Opin Nephrol Hypertens. 2019; 28: 1-9https://doi.org/10.1097/MNH.0000000000000463
        • Kattah AG
        • Smith CY
        • Gazzuola Rocca L
        • Grossardt BR
        • Garovic VD
        • Rocca WA
        CKD in patients with bilateral oophorectomy.
        Clin J Am Soc Nephrol. 2018; 13: 1649-1658https://doi.org/10.2215/CJN.03990318
        • Ji H
        • Pesce C
        • Zheng W
        • et al.
        Sex differences in renal injury and nitric oxide production in renal wrap hypertension.
        Am J Physiol Heart Circ Physiol. 2005; 288: H43-H47https://doi.org/10.1152/ajpheart.00630.2004
        • Forte P
        • Kneale BJ
        • Milne E
        • et al.
        Evidence for a difference in nitric oxide biosynthesis between healthy women and men.
        Hypertension. 1998; 32: 730-734https://doi.org/10.1161/01.hyp.32.4.730
        • Pscheidt C
        • Nagel G
        • Zitt E
        • Kramar R
        • Concin H
        • Lhotta K.
        Sex- and time-dependent patterns in risk factors of end-stage renal disease: a large Austrian cohort with up to 20 years of follow-up.
        PLoS One. 2015; 10e0135052https://doi.org/10.1371/journal.pone.0135052
        • Jankowski J
        • Floege J
        • Fliser D
        • Bohm M
        • Marx N.
        Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options.
        Circulation. 2021; 143: 1157-1172https://doi.org/10.1161/circulationaha.120.050686
        • O'Lone E
        • Kelly PJ
        • Masson P
        • et al.
        Incidence of ischaemic heart disease in men and women with end-stage kidney disease: a cohort study.
        Heart Lung Circ. 2020; 29: 1517-1526https://doi.org/10.1016/j.hlc.2020.03.002
        • Masson P
        • Kelly PJ
        • Craig JC
        • Lindley RI
        • Webster AC.
        Risk of stroke in patients with ESRD.
        Clin J Am Soc Nephrol. 2015; 10: 1585-1592https://doi.org/10.2215/CJN.12001214
      9. US Rednal Data System. 2020 USRDS Annual Data Report: Epidemiology of kidney disease in the United States. 2020. Accessed August 3, 2022. https://adr.usrds.org/2020

        • Ahmed S
        • Dumanski S
        Do sex and gender matter in kidney and cardiovascular disease?.
        Am J Kidney Dis. 2021; 78: 177-179
        • Nitsch D
        • Grams M
        • Sang Y
        • et al.
        Associations of estimated glomerular filtration rate and albuminuria with mortality and renal failure by sex: a meta-analysis.
        BMJ. 2013; 346: f324https://doi.org/10.1136/bmj.f324
        • Appelman Y
        • van Rijn BB
        • Ten Haaf ME
        • Boersma E
        • Peters SA
        Sex differences in cardiovascular risk factors and disease prevention.
        Atherosclerosis. 2015; 241: 211-218https://doi.org/10.1016/j.atherosclerosis.2015.01.027
        • Ray JG
        • Vermeulen MJ
        • Schull MJ
        • Redelmeier DA.
        Cardiovascular health after maternal placental syndromes (CHAMPS): population-based retrospective cohort study.
        Lancet. 2005; 366: 1797-1803https://doi.org/10.1016/S0140-6736(05)67726-4
        • Bramham K
        • Seed PT
        • Lightstone L
        • et al.
        Diagnostic and predictive biomarkers for pre-eclampsia in patients with established hypertension and chronic kidney disease.
        Kidney Int. 2016; 89: 874-885https://doi.org/10.1016/j.kint.2015.10.012
        • Mol BWJ
        • Roberts CT
        • Thangaratinam S
        • Magee LA
        • de Groot CJM
        • Hofmeyr GJ.
        Pre-eclampsia.
        Lancet. 2016; 387: 999-1011https://doi.org/10.1016/S0140-6736(15)00070-7
        • Ahmed SB
        • Ramesh S.
        Sex hormones in women with kidney disease.
        Nephrol Dial Transplant. 2016; 31: 1787-1795https://doi.org/10.1093/ndt/gfw084
        • Kaur H
        • Werstuck GH.
        The effect of testosterone on cardiovascular disease and cardiovascular risk factors in men: a review of clinical and preclinical data.
        CJC Open. 2021; 3: 1238-1248https://doi.org/10.1016/j.cjco.2021.05.007
        • Iorga A
        • Cunningham CM
        • Moazeni S
        • Ruffenach G
        • Umar S
        • Eghbali M.
        The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy.
        Biol Sex Differ. 2017; 8: 33https://doi.org/10.1186/s13293-017-0152-8
        • Farahmand M
        • Ramezani Tehrani F
        • Khalili D
        • Cheraghi L
        • Azizi F
        Endogenous estrogen exposure and chronic kidneydisease; a 15-year prospective cohort study.
        BMC Endocr Disord. 2021; 21: 155https://doi.org/10.1186/s12902-021-00817-3
        • Kim HS
        • Ng DK
        • Matheson MB
        • et al.
        Delayed menarche in girls with chronic kidney disease and the association with short stature.
        Pediatr Nephrol. 2020; 35: 1471-1475https://doi.org/10.1007/s00467-020-04559-7
        • Gold EB
        • Crawford SL
        • Avis NE
        • et al.
        Factors related to age at natural menopause: longitudinal analyses from SWAN.
        Am J Epidemiol. 2013; 178: 70-83https://doi.org/10.1093/aje/kws421
        • Kramer HM
        • Curhan GC
        • Singh A
        Hemodialysis, Estrogen Levels in Postmenopausal Patients Study Group. Permanent cessation of menses and postmenopausal hormone use in dialysis-dependent women: the HELP study.
        Am J Kidney Dis. 2003; 41: 643-650https://doi.org/10.1053/ajkd.2003.50126
        • Vellanki K
        • Hou S.
        • Menopause in CKD.
        Am J Kidney Dis. 2018; 71: 710-719https://doi.org/10.1053/j.ajkd.2017.12.019
        • Gold EB.
        The timing of the age at which natural menopause occurs.
        Obstet Gynecol Clin North Am. 2011; 38: 425-440https://doi.org/10.1016/j.ogc.2011.05.002
        • Keck C
        • Taylor M.
        Emerging research on the implications of hormone replacement therapy on coronary heart disease.
        Curr Atheroscler Rep. 2018; 20: 57https://doi.org/10.1007/s11883-018-0758-2
        • Tonelli M
        • Sacks F
        • Pfeffer M
        • et al.
        Relation between serum phosphate level and cardiovascular event rate in people with coronary disease.
        Circulation. 2005; 112: 2627-2633https://doi.org/10.1161/circulationaha.105.553198
        • Ix JH
        • Chonchol M
        • Laughlin GA
        • Shlipak MG
        • Whooley MA.
        Relation of sex and estrogen therapy to serum fibroblast growth factor 23, serum phosphorus, and urine phosphorus: the Heart and Soul Study.
        Am J Kidney Dis. 2011; 58: 737-745https://doi.org/10.1053/j.ajkd.2011.06.011
        • Gutierrez OM
        • Mannstadt M
        • Isakova T
        • et al.
        Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis.
        N Engl J Med. 2008; 359: 584-592https://doi.org/10.1056/nejmoa0706130
        • Perunicic-Pekovic G
        • Pljesa S
        • Rasic-Milutinovic Z
        • Stankovic S
        • Ilic M
        • Maletic R.
        Inflammatory cytokines and malnutrition as related to risk for cardiovascular disease in hemodialysis patients.
        Can J Physiol Pharmacol. 2008; 86: 205-209https://doi.org/10.1139/Y08-018
        • Vongsanim S
        • Davenport A.
        The effect of gender on survival for hemodialysis patients: why don't women live longer than men?.
        Semin Dial. 2019; 32: 438-443https://doi.org/10.1111/sdi.12817
        • Charytan D
        • Kuntz RE.
        The exclusion of patients with chronic kidney disease from clinical trials in coronary artery disease.
        Kidney Int. 2006; 70: 2021-2030https://doi.org/10.1038/sj.ki.5001934
        • Khan E
        • Brieger D
        • Amerena J
        • et al.
        Differences in management and outcomes for men and women with ST-elevation myocardial infarction.
        Med J Aust. 2018; 209: 118-123https://doi.org/10.5694/mja17.01109
        • Huxley R
        • Barzi F
        • Woodward M.
        Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies.
        BMJ. 2006; 332: 73-78https://doi.org/10.1136/bmj.38678.389583.7C
        • Yusuf S
        • Hawken S
        • Ounpuu S
        • et al.
        Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study.
        Lancet. 2004; 364: 937-952https://doi.org/10.1016/S0140-6736(04)17018-9
        • Flink L
        • Mochari-Greenberger H
        • Mosca L.
        Gender differences in clinical outcomes among diabetic patients hospitalized for cardiovascular disease.
        Am Heart J. 2013; 165: 972-978
        • Prince RL.
        Counterpoint: estrogen effects on calcitropic hormones and calcium homeostasis.
        Endocr Rev. 1994; 15: 301-309https://doi.org/10.1210/edrv-15-3-301
        • Almaden Y
        • Felsenfeld AJ
        • Rodriguez M
        • et al.
        Proliferation in hyperplastic human and normal rat parathyroid glands: role of phosphate, calcitriol, and gender.
        Kidney Int. 2003; 64: 2311-2317https://doi.org/10.1046/j.1523-1755.2003.00331.x
        • Naveh-Many T
        • Volovelsky O.
        Parathyroid cell proliferation in secondary hyperparathyroidism of chronic kidney disease.
        Int J Mol Sci. 2020; 21: 4332https://doi.org/10.3390/ijms21124332
        • Satirapoj B
        • Limwannata P
        • Chaiprasert A
        • Supasyndh O
        • Choovichian P.
        Vitamin D insufficiency and deficiency with stages of chronic kidney disease in an Asian population.
        BMC Nephrol. 2013; 14: 206https://doi.org/10.1186/1471-2369-14-206
        • Jean G
        • Souberbielle J
        • Chazot C.
        Vitamin D in chronic kidney disease and dialysis patients.
        Nutrients. 2017; 9: 328
        • Filipov J
        • Zlatkov B
        • Dimitrov E
        • Svinarov D.
        Relationship between vitamin D status and immunosuppressive therapy in kidney transplant recipients.
        Biotechnol Biotechnol Equip. 2015; 29: 331-335
        • Mohiuddin S
        • Marie M
        • Ashraf M
        • Hussein M
        • Almalki N.
        Is there an association between vitamin D level and inflammatory markers in hemodialysis patients? A cross-sectional study.
        Saudi J Kidney Dis Transpl. 2016; 27: 460-466
        • Ravani P
        • Malberti F
        • Tripepi G
        • et al.
        Vitamin D levels and patient outcome in chronic kidney disease.
        Kidney Int. 2009; 75: 88-95https://doi.org/10.1038/ki.2008.501
        • Rohrmann S
        • Braun J
        • Bopp M
        • Faeh D.
        Inverse association between circulating vitamin D and mortality–dependent on sex and cause of death?.
        Nutr Metab Cardiovasc Dis. 2013; 23: 960-966
        • Serdar MA
        • Batu Can B
        • Kilercik M
        • et al.
        Analysis of changes in parathyroid hormone and 25 (OH) vitamin D levels with respect to age, gender and season: a data mining study.
        J Med Biochem. 2017; 36: 73-83https://doi.org/10.1515/jomb-2017-0002
        • Bures C
        • Skachko T
        • Dobrindt E
        • Pratschke J
        • Uluk D
        • Mogl M.
        Is there a gender difference in clinical presentation of renal hyperparathyroidism and outcome after parathyroidectomy?.
        Visc Med. 2020; 26: 34-40
        • Castellano E
        • Attanasio R
        • Boriano A
        • et al.
        Sex difference in the clinical presentation of primary hyperparathyroidism: influence of menopausal status.
        J Clin Endocrinol Metab. 2017; 102: 4148-4152https://doi.org/10.1210/jc.2017-01080
        • Mazeh H
        • Sippel RS
        • Chen H.
        The role of gender in primary hyperparathyroidism: same disease, different presentation.
        Ann Surg Oncol. 2012; 19: 2958-2962https://doi.org/10.1245/s10434-012-2378-3
        • Gupta A
        • Kallenbach L
        • Zasuwa G
        • Divine G.
        Race is a major determinant of secondary hyperparathyroidism in uremic patients.
        J Am Soc Nephrol. 2000; 11: 330-334
        • Kovesdy C
        • Ahmadzadeh S
        • Anderson J
        • Kalantar-Zadeh K.
        Secondary hyperparathyroidism is associated with higher mortality in men with moderate to severe chronic kidney disease.
        Kidney Int. 2008; 73: 1296-1392
        • Tentori F
        • Blayney MJ
        • Albert JM
        • et al.
        Mortality risk for dialysis patients with different levels of serum calcium, phosphorus, and PTH: the Dialysis Outcomes and Practice Patterns Study (DOPPS).
        Am J Kidney Dis. 2008; 52: 519-530https://doi.org/10.1053/j.ajkd.2008.03.020
        • Saab G
        • Bomback AS
        • McFarlane SI
        • et al.
        The association of parathyroid hormone with ESRD and pre-ESRD mortality in the Kidney Early Evaluation Program.
        J Clin Endocrinol Metab. 2012; 97: 4414-4421https://doi.org/10.1210/jc.2012-2001
        • Liu C
        • Lin Y
        • Lin Y
        • et al.
        Roles of serum calcium, phosphorus, PTH and ALP on mortality in peritoneal dialysis patients: a nationwide, population-based longitudinal study using TWRDS 2005–2012.
        Sci Rep. 2017; 7: 33
        • Kovesdy CP
        • Anderson JE
        • Kalantar-Zadeh K.
        Outcomes associated with serum phosphorus level in males with non-dialysis dependent chronic kidney disease.
        Clin Nephrol. 2010; 73: 268-275https://doi.org/10.5414/cnp73268
        • Kovesdy CP
        • Kuchmak O
        • Lu JL
        • Kalantar-Zadeh K.
        Outcomes associated with serum calcium level in men with non-dialysis-dependent chronic kidney disease.
        Clin J Am Soc Nephrol. 2010; 5: 468-476https://doi.org/10.2215/CJN.06040809
        • Kestenbaum B
        • Sampson J
        • Rudser K
        • et al.
        Serum phosphate levels and mortality risk among people with chronic kidney disease.
        J Am Soc Nephrol. 2005; 16: 520-528
        • Eddington H
        • Hoefield R
        • Sinha S
        • et al.
        Serum phosphate and mortality in patients with chronic kidney disease.
        Clin J Am Soc Nephrol. 2010; 5: 2251-2257https://doi.org/10.2215/cjn.00810110
        • Janmaat C
        • van Diepen M
        • Gasparini A
        • et al.
        Lower serum calcium is independently associated with CKD progression.
        Sci Rep. 2018; 8: 5148
        • Lim L
        • Kuo H
        • Kuo M.
        Low serum calcium is associated with poor renal outcomes in chronic kidney disease stages 3–4 patients.
        BMC Nephrol. 2014; 15: 183
        • Lomonte C
        • Vernaglione L
        • Cazzato F
        • et al.
        Post-parathyroidectomy serum phosphate kinetics is peculiar to female hemodialysis patients with a high body mass index.
        J Nephrol. 2006; 19: 70-76
        • Takayama S
        • Fukuno K
        • Ideuchi H
        • et al.
        The effects of gender and age on serum calcium and phosphorus levels in hemodialysis patients.
        Jpn J Nephrol Pharmacother. 2015; 4: 3-11
        • Weigert A
        • Drozdz M
        • Silva F
        • et al.
        Influence of gender and age on haemodialysis practices: a European multicentre analysis.
        Clin Kidney J. 2020; 13: 217-224https://doi.org/10.1093/ckj/sfz069
        • Nitsch D
        • Mylne A
        • Roderick PJ
        • Smeeth L
        • Hubbard R
        • Fletcher A.
        Chronic kidney disease and hip fracture-related mortality in older people in the UK.
        Nephrol Dial Transplant. 2009; 24: 1539-1544https://doi.org/10.1093/ndt/gfn678
        • Doan Q
        • Gleeson M
        • Kim J
        • Borker R
        • Griffiths R
        • Dubois R.
        Economic burden of cardiovascular events and fractures among patients with end-stage renal disease.
        Curr Med Res Opin. 2007; 23: 1561-1569
        • Vilaca T
        • Salam S
        • Schini M
        • et al.
        Risks of hip and nonvertebral fractures in patients with CKD G3a-G5D: a systematic review and meta-analysis.
        Am J Kidney Dis. 2020; 76: 521-532https://doi.org/10.1053/j.ajkd.2020.02.450
        • Bucur RC
        • Panjwani DD
        • Turner L
        • Rader T
        • West SL
        • Jamal SA.
        Low bone mineral density and fractures in stages 3-5 CKD: an updated systematic review and meta-analysis.
        Osteoporos Int. 2015; 26: 449-458https://doi.org/10.1007/s00198-014-2813-3
        • Alem A
        • Sherrard D
        • Gillen D
        • et al.
        Increased risk of hip fracture among patients with end-stage renal disease.
        Kidney Int. 2000; 58: 396-399
        • Mahmoodi H
        • Jalalizad Nahand F
        • Shaghaghi A
        • Shooshtari S
        • Jafarabadi MA
        • Allahverdipour H
        Gender based cognitive determinants of medication adherence in older adults with chronic conditions.
        Patient Prefer Adherence. 2019; 13: 1733-1744https://doi.org/10.2147/PPA.S219193
        • Chen SL
        • Lee WL
        • Liang T
        • Liao IC.
        Factors associated with gender differences in medication adherence: a longitudinal study.
        J Adv Nurs. 2014; 70: 2031-2040https://doi.org/10.1111/jan.12361
        • Boucquemont J
        • Pai A
        • Dharnidharka V
        • Hebert D
        • Furth S
        • Foster B.
        Gender differences in medication adherence among adolescent and young adult kidney transplant recipients.
        Transplantation. 2019; 103: 798-806
        • Anderson G.
        Chapter 1: gender differences in pharmacological response.
        Int Rev Neurobiol. 2008;83; : 1-10
        • Basile C
        • Lomonte C
        • Vernaglione L
        • et al.
        A high body mass index and female gender are associated with an increased risk of nodular hyperplasia of parathyroid glands in chronic uraemia.
        Nephrol Dial Transplant. 2006; 21 (968-794)https://doi.org/10.1093/ndt/gfi311
        • Locatelli F
        • Pisoni RL
        • Combe C
        • et al.
        Anaemia in haemodialysis patients of five European countries: association with morbidity and mortality in the Dialysis Outcomes and Practice Patterns Study (DOPPS).
        Nephrol Dial Transplant. 2004; 19: 121-132https://doi.org/10.1093/ndt/gfg458
        • Finkelstein FO
        • Story K
        • Firanek C
        • et al.
        Health-related quality of life and hemoglobin levels in chronic kidney disease patients.
        Clin J Am Soc Nephrol. 2009; 4: 33-38https://doi.org/10.2215/CJN.00630208
        • Strippoli GF
        • Navaneethan SD
        • Craig JC.
        Haemoglobin and haematocrit targets for the anaemia of chronic kidney disease.
        Cochrane Database Syst Rev. 2006; CD003967https://doi.org/10.1002/14651858.CD003967.pub2
        • Kidney Disease
        Improving Global Outcomes (KDIGO) Anemia Work Group. KDIGO clinical practice guideline for anemia in chronic kidney disease.
        Kidney Int Suppl. 2012; 2: 278-335
        • Astor BC
        • Muntner P
        • Levin A
        • Eustace JA
        • Coresh J.
        Association of kidney function with anemia: the Third National Health and Nutrition Examination Survey (1988-1994).
        Arch Intern Med. 2002; 162: 1401-1408https://doi.org/10.1001/archinte.162.12.1401
        • Babitt JL
        • Lin HY.
        Mechanisms of anemia in CKD.
        J Am Soc Nephrol. 2012; 23: 1631-1634https://doi.org/10.1681/ASN.2011111078
        • Ifudu O
        • Uribarri J
        • Rajwani I
        • et al.
        Gender modulates responsiveness to recombinant erythropoietin.
        Am J Kidney Dis. 2001; 38: 518-522https://doi.org/10.1053/ajkd.2001.26842
        • Ryta A
        • Chmielewski M
        • Debska-Slizien A
        • Jagodzinski P
        • Sikorska-Wisniewska M
        • Lichodziejewska-Niemierko M.
        Impact of gender and dialysis adequacy on anaemia in peritoneal dialysis.
        Int Urol Nephrol. 2017; 49: 903-908https://doi.org/10.1007/s11255-016-1499-1
        • Wyld M
        • Morton RL
        • Hayen A
        • Howard K
        • Webster AC.
        A systematic review and meta-analysis of utility-based quality of life in chronic kidney disease treatments.
        PLoS Med. 2012; 9e1001307https://doi.org/10.1371/journal.pmed.1001307
        • Wyld MLR
        • Morton RL
        • Clayton P
        • et al.
        The impact of progressive chronic kidney disease on health-related quality-of-life: a 12-year community cohort study.
        Qual Life Res. 2019; 28: 2081-2090https://doi.org/10.1007/s11136-019-02173-1
        • Tsai YC
        • Hung CC
        • Hwang SJ
        • et al.
        Quality of life predicts risks of end-stage renal disease and mortality in patients with chronic kidney disease.
        Nephrol Dial Transplant. 2010; 25: 1621-1626https://doi.org/10.1093/ndt/gfp671
        • Porter A
        • Fischer MJ
        • Wang X
        • et al.
        Quality of life and outcomes in African Americans with CKD.
        J Am Soc Nephrol. 2014; 25: 1849-1855https://doi.org/10.1681/ASN.2013080835
        • Kutner NG
        • Zhang R
        • Brogan D.
        Race, gender, and incident dialysis patients' reported health status and quality of life.
        J Am Soc Nephrol. 2005; 16: 1440-1448https://doi.org/10.1681/ASN.2004080639
        • Lopes G
        • Matos C
        • Leite E
        • et al.
        Depression as a potential explanation for gender differences in health-related quality of life among patients on maintenance hemodialysis.
        Nephron Clin Pract. 2010; 115: c35-e40
        • Hecking M
        • Bieber BA
        • Ethier J
        • et al.
        Sex-specific differences in hemodialysis prevalence and practices and the male-to-female mortality rate: the Dialysis Outcomes and Practice Patterns Study (DOPPS).
        PLoS Med. 2014; 11e1001750https://doi.org/10.1371/journal.pmed.1001750
        • Yeh S
        • Huang C
        • Chou H
        • Wan T.
        Gender differences in stress and coping among elderly patients on hemodialysiss.
        Sex Roles. 2009; 60: 44-56
        • Porter AC
        • Lash JP
        • Xie D
        • et al.
        Predictors and outcomes of health-related quality of life in adults with CKD.
        Clin J Am Soc Nephrol. 2016; 11: 1154-1162https://doi.org/10.2215/CJN.09990915
        • Au E
        • Chapman J
        • Craig J
        • et al.
        Overall and site-specific cancer mortality in patients on dialysis and after kidney transplant.
        J Am Soc Nephrol. 2019; 30: 471-480
        • Lees J
        • Ho F
        • Parra-Soto S
        • et al.
        Kidney function and cancer risk: an analysis using creatinine and cystatin C in a cohort study.
        EClinical Medicine. 2021; 38101030
        • Go AS
        • Chertow GM
        • Fan D
        • McCulloch CE
        • Hsu CY.
        Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization.
        N Engl J Med. 2004; 351: 1296-1305https://doi.org/10.1056/NEJMoa041031
        • Neovius M
        • Jacobson SH
        • Eriksson JK
        • Elinder CG
        • Hylander B.
        Mortality in chronic kidney disease and renal replacement therapy: a population-based cohort study.
        BMJ Open. 2014; 4e004251https://doi.org/10.1136/bmjopen-2013-004251
        • Carrero JJ
        • de Jager DJ
        • Verduijn M
        • et al.
        Cardiovascular and noncardiovascular mortality among men and women starting dialysis.
        Clin J Am Soc Nephrol. 2011; 6: 1722-1730https://doi.org/10.2215/CJN.11331210
        • Sood MM
        • Rigatto C
        • Komenda P
        • Mojica J
        • Tangri N.
        Mortality risk for women on chronic hemodialysis differs by age.
        Can J Kidney Health Dis. 2014; 1: 10https://doi.org/10.1186/2054-3581-1-10
        • Reichel H
        • Zee J
        • Tu C
        • et al.
        Chronic kidney disease progression and mortality risk profiles in Germany: results from the Chronic Kidney Disease Outcomes and Practice Patterns Study.
        Nephrol Dial Transplant. 2020; 35: 803-810https://doi.org/10.1093/ndt/gfz260
        • Swartling O
        • Rydell H
        • Stendahl M
        • Segelmark M
        • Trolle Lagerros Y
        • Evans M
        CKD progression and mortality among men and women: a nationwide study in Sweden.
        Am J Kidney Dis. 2021; 78 (190-199. e1)https://doi.org/10.1053/j.ajkd.2020.11.026
        • Jung CY
        • Heo GY
        • Park JT
        • et al.
        Sex disparities and adverse cardiovascular and kidney outcomes in patients with chronic kidney disease: results from the KNOW-CKD.
        Clin Res Cardiol. 2021; 110: 1116-1127https://doi.org/10.1007/s00392-021-01872-5
        • Ahearn P
        • Johansen KL
        • McCulloch CE
        • Grimes BA
        • Ku E.
        Sex disparities in risk of mortality among children with ESRD.
        Am J Kidney Dis. 2019; 73: 156-162https://doi.org/10.1053/j.ajkd.2018.07.019
        • De La Mata NL
        • Rosales B
        • MacLeod G
        • et al.
        Sex differences in mortality among binational cohort of people with chronic kidney disease: population based data linkage study.
        BMJ. 2021; 375e068247.
        • Nordio M
        • Limido A
        • Maggiore U
        • et al.
        Survival in patients treated by long-term dialysis compared with the general population.
        Am J Kidney Dis. 2012; 59: 819-828https://doi.org/10.1053/j.ajkd.2011.12.023
      10. United States Renal Data System (USRDS). USRDS annual data report: epidemiology of kidney disease in the United States. Accessed February 23, 2021. https://adr.usrds.org/2020/end-stage-renal-disease/5-mortality

        • van Walraven C
        • Manuel DG
        • Knoll G.
        Survival trends in ESRD patients compared with the general population in the United States.
        Am J Kidney Dis. 2014; 63: 491-499https://doi.org/10.1053/j.ajkd.2013.09.011
        • Villar E
        • Remontet L
        • Labeeuw M
        • Ecochard R.
        Effect of age, gender, and diabetes on excess death in end-stage renal failure.
        J Am Soc Nephrol. 2007; 18: 2125-2134https://doi.org/10.1681/ASN.2006091048
        • Ma L
        • Zhao S.
        Risk factors for mortality in patients undergoing hemodialysis: a systematic review and meta-analysis.
        Int J Cardiol. 2017; 238: 151-158https://doi.org/10.1016/j.ijcard.2017.02.095
        • Hanson CS
        • Craig JC
        • Logeman C
        • et al.
        Establishing core outcome domains in pediatric kidney disease: report of the Standardized Outcomes in Nephrology-Children and Adolescents (SONG-KIDS) consensus workshops.
        Kidney Int. 2020; 98: 553-565https://doi.org/10.1016/j.kint.2020.05.054
        • Flynn JT
        • Mitsnefes M
        • Pierce C
        • et al.
        Blood pressure in children with chronic kidney disease: a report from the Chronic Kidney Disease in Children study.
        Hypertension. 2008; 52: 631-637https://doi.org/10.1161/hypertensionaha.108.110635
        • Brady TM
        • Roem J
        • Cox C
        • et al.
        Adiposity, sex, and cardiovascular disease risk in children with CKD: a longitudinal study of youth enrolled in the Chronic Kidney Disease in Children (CKiD) study.
        Am J Kidney Dis. 2020; 76: 166-173https://doi.org/10.1053/j.ajkd.2020.01.011
        • Schaefer F
        • Doyon A
        • Azukaitis K
        • et al.
        Cardiovascular phenotypes in children with CKD: the 4C Study.
        Clin J Am Soc Nephrol. 2017; 12: 19-28https://doi.org/10.2215/CJN.01090216
        • Tong A
        • Evangelidis N
        • Kurnikowski A
        • et al.
        Nephrologists' perspectives on gender disparities in CKD and dialysis.
        Kidney Int Rep. 2022; 7: 424-435https://doi.org/10.1016/j.ekir.2021.10.022