Advertisement

Sex Differences and the Risk of Kidney Stones

      Summary

      A significant increase in the prevalence of kidney stones has been observed worldwide. In the past decades, this expansion was more pronounced among women than men. The precise mechanisms involved in the differences in the risk profile of stone disease between men and women have not been fully elucidated. Diet and lifestyle only partially can explain the differences, and the combination of factors such as the influence of sex hormones, genetics, and disorders in acid-base handling and urine pH, as well as differences in calcium tubular reabsorption and stone composition in men and women, may contribute to differences in the risk profile. In this review, we summarize the sex differences in the pathophysiologic basis of kidney stones, which may contribute to a more focused approach.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Nephrology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      REFERENCES

        • Chen Z
        • Prosperi M
        • Bird VY.
        Prevalence of kidney stones in the USA: the National Health and Nutrition Evaluation Survey.
        J Clin Urol. 2019; 12: 296-302
        • Chewcharat A
        • Curhan G.
        Trends in the prevalence of kidney stones in the United States from 2007 to 2016.
        Urolithiasis. 2021; 49: 27-39
        • Abufaraj M
        • Xu T
        • Cao C
        • et al.
        Prevalence and trends in kidney stone among adults in the USA: analyses of National Health and Nutrition Examination Survey 2007–2018 data.
        Eur Urol Focus. 2021; 7: 1468-1475
        • Scales CD
        • Smith AC
        • Hanley JM
        • Saigal CS.
        Prevalence of kidney stones in the United States.
        Eur Urol. 2012; 62: 160-165
        • Scales CD
        • Curtis LH
        • Norris RD
        • et al.
        Changing gender prevalence of stone disease.
        J Urol. 2007; 177: 979-982
        • Ogden CL
        • Carroll MD
        • Lawman HG
        • et al.
        Trends in obesity prevalence among children and adolescents in the United States, 1988-1994 through 2013-2014.
        JAMA. 2016; 315: 2292
        • Antonelli JA
        • Maalouf NM
        • Pearle MS
        • Lotan Y.
        Use of the National Health and Nutrition Examination Survey to calculate the impact of obesity and diabetes on cost and prevalence of urolithiasis in 2030.
        Eur Urol. 2014; 66: 724-729
        • Ferraro PM
        • Mandel EI
        • Curhan GC
        • Gambaro G
        • Taylor EN.
        Dietary protein and potassium, diet–dependent net acid load, and risk of incident kidney stones.
        Clin J Am Soc Nephrol. 2016; 11: 1834-1844
        • Ticinesi A
        • Nouvenne A
        • Maalouf NM
        • Borghi L
        • Meschi T.
        Salt and nephrolithiasis.
        Nephrol Dial Transplant. 2016; 31: 39-45
        • Taylor EN
        • Curhan GC.
        Oxalate intake and the risk for nephrolithiasis.
        J Am Soc Nephrol. 2007; 18: 2198-2204
        • Taylor EN
        • Curhan GC.
        Fructose consumption and the risk of kidney stones.
        Kidney Int. 2008; 73: 207-212
        • Ferraro PM
        • Taylor EN
        • Gambaro G
        • Curhan GC.
        Soda and other beverages and the risk of kidney stones.
        Clin J Am Soc Nephrol. 2013; 8: 1389-1395
        • Ferraro PM
        • Curhan GC
        • Gambaro G
        • Taylor EN.
        Total, dietary, and supplemental vitamin C intake and risk of incident kidney stones.
        Am J Kidney Dis. 2016; 67: 400-407
        • Borghi L
        • Schianchi T
        • Meschi T
        • et al.
        Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria.
        N Engl J Med. 2002; 346: 77-84
        • Taylor EN
        • Fung TT
        • Curhan GC.
        DASH-style diet associates with reduced risk for kidney stones.
        J Am Soc Nephrol. 2009; 20: 2253-2259
        • Taylor EN
        • Curhan GC.
        Diet and fluid prescription in stone disease.
        Kidney Int. 2006; 70: 835-839
        • Nackeeran S
        • Katz J
        • Ramasamy R
        • Marcovich R.
        Association between sex hormones and kidney stones: analysis of the National Health and Nutrition Examination Survey.
        World J Urol. 2021; 39: 1269-1275
        • Kato Y
        • Yamaguchi S
        • Kakizaki H
        • Yachiku S
        Influence of estrus status on urinary chemical parameters related to urolithiasis.
        Urol Res. 2005; 33: 476-480
        • McClintock TR
        • Valovska M-TI
        • Kwon NK
        • Cole AP
        • Jiang W
        • Kathrins MN
        • et al.
        Testosterone replacement therapy is associated with an increased risk of urolithiasis.
        World J Urol. 2019; 37: 2737-2746
        • Reinstatler L
        • Khaleel S
        • Pais VM.
        Association of pregnancy with stone formation among women in the United States: a NHANES analysis 2007 to 2012.
        J Urol. 2017; 198: 389-393
        • Keller EX
        • De Coninck V
        • Audouin M
        • Doizi S
        • Daudon M
        • Traxer O.
        Stone composition independently predicts stone size in 18,029 spontaneously passed stones.
        World J Urol. 2019; 37: 2493-2499
        • Miller BS
        • Dimick J
        • Wainess R
        • Burney RE.
        Age- and sex-related incidence of surgically treated primary hyperparathyroidism.
        World J Surg. 2008; 32: 795-799
        • Bianic F
        • Guelfucci F
        • Robin L
        • Martre C
        • Game D
        • Bockenhauer D.
        Epidemiology of distal renal tubular acidosis: a study using linked UK primary care and hospital data.
        Nephron. 2021; 145: 486-495
        • van Eeden AE
        • van Hoeken D
        • Hoek HW.
        Incidence, prevalence and mortality of anorexia nervosa and bulimia nervosa.
        Curr Opin Psychiatry. 2021; 34: 515-524
        • Zhu W
        • Zhao Z
        • Chou F
        • Zuo L
        • Liu T
        • Yeh S
        • et al.
        Loss of the androgen receptor suppresses intrarenal calcium oxalate crystals deposition via altering macrophage recruitment/M2 polarization with change of the miR-185-5p/CSF-1 signals.
        Cell Death Dis. 2019; 10: 275
        • Li J-Y
        • Zhou T
        • Gao X
        • Xu C
        • Sun Y
        • Peng Y
        • et al.
        Testosterone and androgen receptor in human nephrolithiasis.
        J Urol. 2010; 184: 2360-2363
        • Yoshihara H
        • Yamaguchi S
        • Yachiku S
        Effect of sex hormones on oxalate-synthesizing enzymes in male and female rat livers.
        J Urol. 1999; 161: 668-673
        • Otunctemur A
        • Ozbek E
        • Cakir SS
        • Dursun M
        • Polat EC
        • Ozcan L
        • et al.
        Urolithiasis is associated with low serum testosterone levels in men.
        Arch Ital Urol E Androl. 2015; 87: 83
        • Jeong IG
        • Kang T
        • Bang JK
        • Park J
        • Kim W
        • Hwang SS
        • et al.
        Association between metabolic syndrome and the presence of kidney stones in a screened population.
        Am J Kidney Dis. 2011; 58: 383-388
        • Kohjimoto Y
        • Sasaki Y
        • Iguchi M
        • Matsumura N
        • Inagaki T
        • Hara I.
        Association of metabolic syndrome traits and severity of kidney stones: results from a nationwide survey on urolithiasis in Japan.
        Am J Kidney Dis. 2013; 61: 923-929
        • Iguchi M
        • Takamura C
        • Umekawa T
        • Kurita T
        • Kohri K.
        Inhibitory effects of female sex hormones on urinary stone formation in rats.
        Kidney Int. 1999; 56: 479-485
        • Dey J
        • Creighton A
        • Lindberg JS
        • Fuselier HA
        • Kok DJ
        • Cole FE
        • et al.
        Estrogen replacement increased the citrate and calcium excretion rates in postmenopausal women with recurrent urolithiasis.
        J Urol. 2002; 167: 169-171
        • Prochaska M
        • Taylor EN
        • Curhan G.
        Menopause and risk of kidney stones.
        J Urol. 2018; 200: 823-828
        • Zhao Z
        • Mai Z
        • Ou L
        • Duan X
        • Zeng G.
        Serum estradiol and testosterone levels in kidney stones disease with and without calcium oxalate components in naturally postmenopausal women.
        PLoS One. 2013; 8: e75513
        • Giannini S
        • Nobile M
        • Dalle Carbonare L
        • et al.
        Hypercalciuria is a common and important finding in postmenopausal women with osteoporosis.
        Eur J Endocrinol. 2003; 149: 209-213
        • McKane WR
        • Khosla S
        • Burrit MF
        • et al.
        Mechanism of renal calcium conservation with estrogen replacement therapy in women in early postmenopause–a clinical research center study.
        J Clin Endocrinol Metab. 1995; 80: 3458-3464
        • Kalu DN
        • Liu C-C
        • Hardin RR
        • Hollis BW.
        The aged rat model of ovarian hormone deficiency bone loss*.
        Endocrinology. 1989; 124: 7-16
        • Ferraro PM
        • Taylor EN
        • Curhan GC.
        Factors associated with sex differences in the risk of kidney stones.
        Nephrol Dial Transplant. 2022; https://doi.org/10.1093/ndt/gfac037
        • Lieske JC
        • Rule AD
        • Krambeck AE
        • et al.
        Stone composition as a function of age and sex.
        Clin J Am Soc Nephrol. 2014; 9: 2141-2146
        • Worcester EM
        • Bergsland KJ
        • Gillen DL
        • Coe FL.
        Mechanism for higher urine pH in normal women compared with men.
        Am J Physiol Renal Physiol. 2018; 314: F623-F629
        • Worcester EM
        • Bergsland KJ
        • Gillen DL
        • Coe FL.
        Evidence for disordered acid-base handling in calcium stone-forming patients.
        Am J Physiol Renal Physiol. 2020; 318: F363-F374
        • Ko B
        • Bergsland K
        • Gillen DL
        • et al.
        Sex differences in proximal and distal nephron function contribute to the mechanism of idiopathic hypercalcuria in calcium stone formers.
        Am J Physiol Regul Integr Comp Physiol. 2015; 309: R85-R92
        • Beers K
        • Patel N.
        Kidney physiology in pregnancy.
        Adv Chronic Kidney Dis. 2020; 27: 449-454
        • Maikranz P
        • Coe FL
        • Parks J
        • Lindheimer MD.
        Nephrolithiasis in pregnancy.
        Am J Kidney Dis. 1987; 9: 354-358
        • Smith CL
        • Kristensen C
        • Davis M
        • Abraham PA
        An evaluation of the physicochemical risk for renal stone disease during pregnancy.
        Clin Nephrol. 2001; 55: 205-211
        • Meria P
        • Hadjadj H
        • Jungers P
        • Daudon M
        Members of the French Urological Association Urolithiasis Committee. Stone formation and pregnancy: pathophysiological insights gained from morphoconstitutional stone analysis.
        J Urol. 2010; 183: 1412-1416
        • Cloutier J
        • Villa L
        • Traxer O
        • Daudon M.
        Kidney stone analysis: “give me your stone, I will tell you who you are!”.
        World J Urol. 2015; 33: 157-169
        • Daudon M
        • Bader CA
        • Jungers P
        Urinary calculi: review of classification methods and correlations with etiology.
        Scanning Microsc. 1993; 7: 1081-1104
        • Daudon M
        • Jungers P
        • Bazin D
        • Williams JC.
        Recurrence rates of urinary calculi according to stone composition and morphology.
        Urolithiasis. 2018; 46: 459-470
        • Daudon M
        • Bouzidi H
        • Bazin D
        Composition and morphology of phosphate stones and their relation with etiology.
        Urol Res. 2010; 38: 459-467
        • Sakhaee K
        • Adams-Huet B
        • Moe OW
        • Pak CYC
        Pathophysiologic basis for normouricosuric uric acid nephrolithiasis.
        Kidney Int. 2002; 62: 971-979
        • Wiederkehr MR
        • Moe OW.
        Uric acid nephrolithiasis: a systemic metabolic disorder.
        Clin Rev Bone Miner Metab. 2011; 9: 207-217
        • Maalouf NM
        • Cameron MA
        • Moe OW
        • Adams-Huet B
        • Sakhaee K.
        Low urine pH: a novel feature of the metabolic syndrome.
        Clin J Am Soc Nephrol. 2007; 2: 883-888
        • Taylor EN
        Obesity, weight gain, and the risk of kidney stones.
        JAMA. 2005; 293: 455
        • Taylor EN
        • Stampfer MJ
        • Curhan GC.
        Diabetes mellitus and the risk of nephrolithiasis.
        Kidney Int. 2005; 68: 1230-1235
        • Aune D
        • Mahamat-Saleh Y
        • Norat T
        • Riboli E.
        Body fatness, diabetes, physical activity and risk of kidney stones: a systematic review and meta-analysis of cohort studies.
        Eur J Epidemiol. 2018; 33: 1033-1047
        • Welbourn R
        • Hollyman M
        • Kinsman R
        • Dixon J
        • Liem R
        • Ottosson J
        • et al.
        Bariatric surgery worldwide: baseline demographic description and one-year outcomes from the Fourth IFSO Global Registry Report 2018.
        Obes Surg. 2019; 29: 782-795
        • Prochaska M
        • Worcester E.
        Risk factors for kidney stone formation following bariatric surgery.
        Kidney360. 2020; 1: 1456-1461
        • Asplin JR
        • Coe FL.
        Hyperoxaluria in kidney stone formers treated with modern bariatric surgery.
        J Urol. 2007; 177: 565-569
        • Denburg MR
        • Leonard MB
        • Jemielita TO
        • et al .
        Risk of urolithiasis in anorexia nervosa: a population-based cohort study using the health improvement network: urolithiasis in anorexia nervosa.
        Eur Eat Disord Rev. 2017; 25: 406-410
        • Dick WH
        • Lingeman JE
        • Preminger GM
        • et al .
        Laxative abuse as a cause for ammonium urate renal calculi.
        J Urol. 1990; 143: 244-247
        • Bouquegneau A
        • Dubois BE
        • Krzesinski J-M
        • Delanaye P.
        Anorexia nervosa and the kidney.
        Am J Kidney Dis. 2012; 60: 299-307
        • Alshaikh AE
        • homeostasis Hassan HA.Gut–kidney axis in oxalate
        Curr Opin Nephrol Hypertens. 2021; 30: 264-274
        • Alpern P
        • discussant RJ.
        Trade-offs in the adaptation to acidosis.
        Kidney Int. 1995; 47: 1205-1215
        • Leaf DE
        • Bukberg PR
        • Goldfarb DS
        Laxative abuse, eating disorders, and kidney stones: a case report and review of the literature.
        Am J Kidney Dis. 2012; 60: 295-298
        • Goldfarb DS
        • Avery AR
        • Beara-Lasic L
        • Duncan GE
        • Goldberg J
        A twin study of genetic influences on nephrolithiasis in women and men.
        Kidney Int Rep. 2018; 4: 535-540
        • Parks JH
        • Coe FL
        • Strauss AL
        Calcium nephrolithiasis and medullary sponge kidney in women.
        N Engl J Med. 1982; 306: 1088-1091