Summary
Keywords
INTRODUCTION
(KDIGO) KDIGO. Acute Kidney Injury (AKI). Published online 2016:Guidelines. https://kdigo.org/guidelines/acute-kidney-injury/
- Franzén S
- Näslund E
- Wang H
- Frithiof R.
- Kwon JH
- Park J
- Lee SH
- Oh AR
- Lee JH
- Min JJ.
- Olsson J
- Svensén CH
- Hahn RG.
Surgery | Anesthetic modality | n | AKI classification | AKI outcome | p |
---|---|---|---|---|---|
Lung resection 26 | Propofol | 1,395 | KDIGO | 3.5% | p=0.88 |
Sevoflurane | 1,477 | 3.6% | |||
Living donor hepatectomy 25 | Propofol | 32 pairs | Serum creatinine concentration | 10% | p=0.20 |
Desflurane | 30 pairs | 6.3% | |||
Nephrectomy 19 | Propofol | 125 | KDIGO | 22.3% | p=0.03 |
Sevoflurane | 125 | 35.6% | |||
Colorectal 21 | Propofol | 3,055 | AKIN | 8.9% | p=0.02 |
Sevoflurane | 1,265 | 11.2% | |||
Open heart 24 | TCI/TIVA | 704 | eGFR, UO, need for dialysis | 9.52% | p=0.53 |
Volatile | 418 | 8.37% | |||
Spinal 23 | Propofol | 13 | KDIGO | 0% | NA |
Sevoflurane | 14 | 0% | |||
Non-cardiac 22
Effects of Volatile versus Total Intravenous Anesthesia on Occurrence of Myocardial Injury after Non-Cardiac Surgery. J Clin Med. 2019; 8https://doi.org/10.3390/jcm8111999 | Propofol | 551 | KDIGO | 3.99% | p=0.003 |
Sevoflurane | 551 | 9.11% | |||
Spinal 20 | Propofol | 766 | KDIGO | 1% | p<0.001 |
Volatile | 766 | 4.2% |
GENERAL ANESTHESIA

The Renal Sympathetic Nervous System

- Kopp UC.

- Kopp UC.
Measurement of RSNA
Volatile Anesthesia and RSNA
- Frithiof R
- Xing T
- McKinley MJ
- May CN
- Ramchandra R.
- Frithiof R
- Ramchandra R
- Hood S
- May C
- Rundgren M.
Pathophysiology of Renal Sympathoexcitation in Ischemia-Induced AKI
- Noh MR
- Jang HS
- Kim J
- Padanilam BJ.
Study | RSNA inhibition/blockade | Renal effects observed with intact RSNA | Species |
---|---|---|---|
Fujii 86 | Renal denervation, i.v. pentolinium | Increased P-Cr Decreased creatinine clearance Increased BUN Increased FENa+ Tubular necrosis Proteinaceous tubular casts Increased renal venous NE spillover | Rat |
Kim 59 | Renal denervation | Increased collagen deposition Tubular fibrosis Neutrophil and macrophage influx Increased renal NE Increased oxidative stress Increased renin activity | Mouse |
Kurata 88 | i.c.v. I-carnosine | Increased P-Cr Decreased creatinine clearance Increased BUN Increased FENa+ Increased urine output Tubular necrosis Medullary congestion Proteinaceous tubular casts | Rat |
Solez 91 | i.v. clonidine | Increased P-Cr Increased BUN Tubular casts | Rabbit |
Sugiura 87 | i.v. agmatine | Decreased creatinine clearance Increased BUN Tubular necrosis Medullary congestion Proteinaceous tubular casts Increased renal venous NE spillover | Rat |
Tsutsui 92 | i.v. moxonidine | Increased P-Cr Decreased creatinine clearance Increased BUN Increased FENa+ Tubular necrosis Medullary congestion Proteinaceous tubular casts Increased renal venous NE spillover | Rat |
PERSPECTIVES
Experimental Considerations
- Franzén S
- Näslund E
- Wang H
- Frithiof R.
CONCLUSION
REFERENCES
- Practice Guidelines for Moderate Procedural Sedation and Analgesia 2018: A Report by the American Society of Anesthesiologists Task Force on Moderate Procedural Sedation and Analgesia, the American Association of Oral and Maxillofacial Surgeons, American College of Radiology, American Dental Association, American Society of Dentist Anesthesiologists, and Society of Interventional Radiology.Anesthesiology. 2018; 128: 437-479https://doi.org/10.1097/ALN.0000000000002043
- Estimate of the global volume of surgery in 2012: an assessment supporting improved health outcomes.Lancet. 2015; 385: S11https://doi.org/10.1016/s0140-6736(15)60806-6
- Incidence, risk factors, and outcomes of perioperative acute kidney injury in noncardiac and nonvascular surgery.Am J Surg. 2014; 207: 53-59https://doi.org/10.1016/j.amjsurg.2013.04.006
- Incidence and outcomes of acute kidney injury after cardiac surgery using either criteria of the RIFLE classification.BMC Nephrol. 2015; 16: 76https://doi.org/10.1186/s12882-015-0066-9
(KDIGO) KDIGO. Acute Kidney Injury (AKI). Published online 2016:Guidelines. https://kdigo.org/guidelines/acute-kidney-injury/
- Incidence, outcomes, and comparisons across definitions of AKI in hospitalized individuals.Clin J Am Soc Nephrol CJASN. 2014; 9: 12-20https://doi.org/10.2215/CJN.02730313
- Acute kidney injury recovery pattern and subsequent risk of CKD: an analysis of Veterans Health Administration data.Am J Kidney Dis. 2016; 67: 742-752https://doi.org/10.1053/j.ajkd.2015.10.019
- Perioperative Acute Kidney Injury: An Under-Recognized Problem.Anesth Analg. 2017; 125: 1223-1232https://doi.org/10.1213/ANE.0000000000002369
- Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery: toward an empirical definition of hypotension.Anesthesiology. 2013; 119: 507-515https://doi.org/10.1097/ALN.0b013e3182a10e26
- Renal autoregulation in health and disease.Physiol Rev. 2015; 95: 405-511https://doi.org/10.1152/physrev.00042.2012
- Prevention of hemorrhage-induced renal vasoconstriction and hypoxia by angiotensin II type 1 receptor antagonism in pigs.Am J Physiol Regul Integr Comp Physiol. 2021; 321: R12-R20https://doi.org/10.1152/ajpregu.00073.2021
- Pre-treatment with the angiotensin receptor 1 blocker losartan protects renal blood flow and oxygen delivery after propofol-induced hypotension in pigs.Sci Rep. 2020; 10: 17924https://doi.org/10.1038/s41598-020-74640-6
- Signaling mechanisms underlying the vascular myogenic response.Physiol Rev. 1999; 79: 387-423https://doi.org/10.1152/physrev.1999.79.2.387
- Perioperative Renoprotection: General Mechanisms and Treatment Approaches.Anesth Analg. 2020; 131: 1679-1692https://doi.org/10.1213/ANE.0000000000005107
- Plasma IL-6 and IL-10 Concentrations Predict AKI and Long-Term Mortality in Adults after Cardiac Surgery.J Am Soc Nephrol JASN. 2015; 26: 3123-3132https://doi.org/10.1681/ASN.2014080764
- Acute kidney injury, long-term renal function and mortality in patients undergoing major abdominal surgery: a cohort analysis.Clin Kidney J. 2016; 9: 192-200https://doi.org/10.1093/ckj/sfv144
- Ventilator-Induced Kidney Injury: Are Novel Biomarkers the Key to Prevention?.Nephron. 2018; 140: 90-93https://doi.org/10.1159/000491557
- Positive end-expiratory pressure ventilation decreases plasma atrial and brain natriuretic peptide levels in humans.Anesth Analg. 1993; 77: 1116-1121https://doi.org/10.1213/00000539-199312000-00006
- Comparison of the impact of propofol versus sevoflurane on early postoperative recovery in living donors after laparoscopic donor nephrectomy: a prospective randomized controlled study.BMC Anesth. 2020; 20: 273https://doi.org/10.1186/s12871-020-01190-9
- Effects of Anesthetic Technique on the Occurrence of Acute Kidney Injury after Spine Surgery: A Retrospective Cohort Study.J Clin Med. 2021; 10: 5653https://doi.org/10.3390/jcm10235653
- The influence of propofol and sevoflurane on acute kidney injury after colorectal surgery: a retrospective cohort study.Anesth Analg. 2016; 123: 363-370https://doi.org/10.1213/ane.0000000000001274
- Effects of Volatile versus Total Intravenous Anesthesia on Occurrence of Myocardial Injury after Non-Cardiac Surgery.J Clin Med. 2019; 8https://doi.org/10.3390/jcm8111999
- Renal function during sevoflurane or total intravenous propofol anaesthesia: a single-centre parallel randomised controlled study.Br J Anaesth. 2022; 128: 838-848https://doi.org/10.1016/j.bja.2022.02.030
- No renal protection from volatile-anesthetic preconditioning in open heart surgery.J Anesth. 2013; 27: 48-55https://doi.org/10.1007/s00540-012-1461-z
- Propofol intravenous anaesthesia with desflurane compared with desflurane alone on postoperative liver function after living-donor liver transplantation: A randomised controlled trial.Eur J Anaesthesiol. 2019; 36: 656-666https://doi.org/10.1097/eja.0000000000001018
- Effect of sevoflurane-based or propofol-based anaesthesia on the incidence of postoperative acute kidney injury: A retrospective propensity score-matched analysis.Eur J Anaesthesiol. 2019; 36: 649-655https://doi.org/10.1097/eja.0000000000001020
- Renal injury from sevoflurane in noncardiac surgery: a retrospective cohort study.Br J Anaesth. 2022; 129: 182-190https://doi.org/10.1016/j.bja.2022.04.026
- Reduction of postoperative mortality and morbidity with epidural or spinal anaesthesia: results from overview of randomised trials.BMJ. 2000; 321: 1493https://doi.org/10.1136/bmj.321.7275.1493
- Association between intraoperative oliguria and acute kidney injury after major noncardiac surgery.Anesth Analg. 2018; 127: 1229-1235https://doi.org/10.1213/ANE.0000000000003576
- Intraoperative oliguria predicts acute kidney injury after major abdominal surgery.Br J Anaesth. 2017; 119: 1127-1134https://doi.org/10.1093/bja/aex255
- Acute kidney injury in pancreatic surgery; association with urine output and intraoperative fluid administration.Am J Surg. 2017; 214: 246-250https://doi.org/10.1016/j.amjsurg.2017.01.040
- The volume kinetics of acetated Ringer's solution during laparoscopic cholecystectomy.Anesth Analg. 2004; 99 (table of contents): 1854-1860https://doi.org/10.1213/01.ane.0000134809.07605.3c
- Population volume kinetics predicts retention of 0.9% saline infused in awake and isoflurane-anesthetized volunteers.Anesthesiology. 2007; 107: 24-32https://doi.org/10.1097/01.anes.0000268387.34758.6d
- A survey of the choice of general anaesthetic agents in Australia and New Zealand.Anaesth Intensive Care. 2019; 47: 235-241https://doi.org/10.1177/0310057X19836104
- An international survey evaluating factors influencing the use of total intravenous anaesthesia.Anaesth Intensive Care. 2018; 46: 332-338https://doi.org/10.1177/0310057x1804600312
- Propofol in anesthesia. Mechanism of action, structure-activity relationships, and drug delivery.Curr Med Chem. 2000; 7: 249-271https://doi.org/10.2174/0929867003375335
- Mechanisms whereby propofol mediates peripheral vasodilation in humans. Sympathoinhibition or direct vascular relaxation?.Anesthesiology. 1997; 86: 64-72https://doi.org/10.1097/00000542-199701000-00010
- Comparison of induction characteristics of four intravenous anaesthetic agents.Anaesthesia. 1986; 41: 995-1000https://doi.org/10.1111/j.1365-2044.1986.tb12740.x
- Is anesthesia caused by potentiation of synaptic or intrinsic inhibition? Recent insights into the mechanisms of volatile anesthetics.J Basic Clin Physiol Pharmacol. 2000; 11: 83-107https://doi.org/10.1515/jbcpp.2000.11.2.83
- Renal toxicity with sevoflurane: a storm in a teacup?.Drugs. 2001; 61: 2155-2162https://doi.org/10.2165/00003495-200161150-00001
- The impact of sevoflurane anesthesia on postoperative renal function: a systematic review and meta-analysis of randomized-controlled trials.Can J Anaesth. 2020; 67: 1595-1623https://doi.org/10.1007/s12630-020-01791-5
- Adverse drug reactions with halogenated anesthetics.Clin Pharmacol Ther. 2008; 84: 158-162https://doi.org/10.1038/clpt.2008.97
- Cardiovascular responses to sevoflurane: a review.Anesth Analg. 1995; 81: S11-S22https://doi.org/10.1097/00000539-199512001-00003
- Renal perfusion, oxygenation, and sympathetic nerve activity during volatile or intravenous general anaesthesia in sheep.Br J Anaesth. 2019; 122: 342-349https://doi.org/10.1016/j.bja.2018.11.018
- Role of Renal Sympathetic Nerve Activity in Volatile Anesthesia's Effect on Renal Excretory Function.Funct Oxf Engl. 2021; 2: zqab042https://doi.org/10.1093/function/zqab042
- Function of Renal Nerves in Kidney Physiology and Pathophysiology.Annu Rev Physiol. 2021; 83: 429-450https://doi.org/10.1146/annurev-physiol-031620-091656
- Change of tubular reabsorption of sodium and water after renal denervation in the dog.J Physiol. 1969; 204: 571-582https://doi.org/10.1113/jphysiol.1969.sp008932
- Water and electrolyte transport in Henle's loop and distal tubule after renal sympathectomy in the rat.Am J Physiol. 1985; 249: F308-F314https://doi.org/10.1152/ajprenal.1985.249.2.F308
- Effect of renal nerve stimulation on NaCl and H2O transport in Henle's loop of the rat.Am J Physiol. 1982; 243: F576-F580https://doi.org/10.1152/ajprenal.1982.243.6.F576
- Nitric oxide modulation of neurally induced proximal tubular fluid reabsorption in the rat.Hypertension. 2002; 39: 790-793https://doi.org/10.1161/hy0302.105681
- Calcineurin mediates alpha-adrenergic stimulation of Na+,K(+)-ATPase activity in renal tubule cells.Proc Natl Acad Sci U A. 1992; 89: 7394-7397https://doi.org/10.1073/pnas.89.16.7394
- Alpha 2 adrenergic agonists stimulate Na+-H+ antiport activity in the rabbit renal proximal tubule.J Clin Invest. 1987; 80: 1755-1762https://doi.org/10.1172/jci113268
- Role of renal sensory nerves in physiological and pathophysiological conditions.Am J Physiol Regul Integr Comp Physiol. 2015; 308: R79-R95https://doi.org/10.1152/ajpregu.00351.2014
- AKI and the Neuroimmune Axis.Semin Nephrol. 2019; 39: 85-95https://doi.org/10.1016/j.semnephrol.2018.10.008
- Impact of anesthesia, sex, and circadian cycle on renal afferent nerve sensitivity.Am J Physiol Heart Circ Physiol. 2021; 320: H117-H132https://doi.org/10.1152/ajpheart.00675.2020
- Impact of anesthesia and sex on sympathetic efferent and hemodynamic responses to renal chemo- and mechanosensitive stimuli.J Neurophysiol. 2021; 126: 668-679https://doi.org/10.1152/jn.00277.2021
- The need for and the challenges of measuring renal sympathetic nerve activity.Heart Rhythm. 2016; 13: 1166-1171https://doi.org/10.1016/j.hrthm.2016.01.018
- Neural control of renal function.Physiol Rev. 1997; 77: 75-197https://doi.org/10.1152/physrev.1997.77.1.75
- Renal denervation prevents long-term sequelae of ischemic renal injury.Kidney Int. 2015; 87: 350-358https://doi.org/10.1038/ki.2014.300
- Renal Denervation Update From the International Sympathetic Nervous System Summit: JACC State-of-the-Art Review.J Am Coll Cardiol. 2019; 73: 3006-3017https://doi.org/10.1016/j.jacc.2019.04.015
- Sympathetic nervous system: evaluation and importance for clinical general anesthesia.Anesthesiology. 2008; 109: 1113-1131https://doi.org/10.1097/ALN.0b013e31818e435c
- Neurocirculatory responses to sevoflurane in humans. A comparison to desflurane.Anesthesiology. 1995; 83: 88-95https://doi.org/10.1097/00000542-199507000-00011
- Characteristics of muscle nerve sympathetic activity during general anaesthesia in humans.Acta Anaesthesiol Scand. 1992; 36: 336-345https://doi.org/10.1111/j.1399-6576.1992.tb03478.x
- Effects of isoflurane on the baroreceptor reflex.Anesthesiology. 1983; 59: 511-520https://doi.org/10.1097/00000542-198312000-00005
- Baroreceptor reflex control of heart rate during isoflurane anesthesia in humans.Anesthesiology. 1984; 60: 173-179https://doi.org/10.1097/00000542-198403000-00001
- Spectral analysis of heart rate variability during isoflurane anesthesia.Anesthesiology. 1992; 77: 669-674https://doi.org/10.1097/00000542-199210000-00009
- General anesthetics and vascular smooth muscle: direct actions of general anesthetics on cellular mechanisms regulating vascular tone.Anesthesiology. 2007; 106: 365-391https://doi.org/10.1097/00000542-200702000-00026
- Effects of anesthesia on cardiac and renal sympathetic nerve activities and plasma catecholamines.Am J Physiol. 1993; 265: R792-R797https://doi.org/10.1152/ajpregu.1993.265.4.R792
- Desflurane-mediated sympathetic activation occurs in humans despite preventing hypotension and baroreceptor unloading.Anesthesiology. 1998; 88: 1227-1232https://doi.org/10.1097/00000542-199805000-00013
- A comparison of baroreflex sensitivity during isoflurane and desflurane anesthesia in humans.Anesthesiology. 1995; 82: 919-925https://doi.org/10.1097/00000542-199504000-00015
- The effects of sevoflurane, enflurane, and isoflurane on baroreceptor-sympathetic reflex in rabbits.Anesth Analg. 1996; 82: 342-348https://doi.org/10.1097/00000539-199602000-00023
- Effect of sevoflurane on spontaneous sympathetic activity and baroreflexes in rabbits.Br J Anaesth. 1998; 80: 68-72https://doi.org/10.1093/bja/80.1.68
- Comparison of the effects of inhalational anaesthetic agents on sympathetic activity in rabbits.Eur J Anaesthesiol. 2000; 17: 311-318https://doi.org/10.1046/j.1365-2346.2000.00669.x
- Effects of anesthetic and sedative agents on sympathetic nerve activity.Heart Rhythm. 2019; 16: 1875-1882https://doi.org/10.1016/j.hrthm.2019.06.017
- Dose-dependent increases in the renal sympathetic nerve activity during rapid increase in isoflurane concentration in intact, lower airway-deafferented, and baroreceptor-deafferented rabbits.Anesthesiology. 1996; 84: 1196-1204
- Specific actions of halothane, isoflurane, and desflurane on sympathetic activity and A delta and C somatosympathetic reflexes recorded in renal nerves in dogs.Anesthesiology. 1999; 91: 470-478https://doi.org/10.1097/00000542-199908000-00022
- Hypertonic sodium resuscitation after hemorrhage improves hemodynamic function by stimulating cardiac, but not renal, sympathetic nerve activity.Am J Physiol Heart Circ Physiol. 2011; 300: H685-H692https://doi.org/10.1152/ajpheart.00930.2010
- Intracarotid hypertonic sodium chloride differentially modulates sympathetic nerve activity to the heart and kidney.Am J Physiol Regul Integr Comp Physiol. 2014; 306: R567-R575https://doi.org/10.1152/ajpregu.00460.2013
- The role of the paraventricular nucleus of the hypothalamus in the regulation of cardiac and renal sympathetic nerve activity in conscious normal and heart failure sheep.J Physiol. 2013; 591: 93-107https://doi.org/10.1113/jphysiol.2012.236059
- Hypothalamic paraventricular nucleus mediates sodium-induced changes in cardiovascular and renal function in conscious sheep.Am J Physiol Regul Integr Comp Physiol. 2009; 297: R185-R193https://doi.org/10.1152/ajpregu.00058.2008
- Comparison between the effects on hemodynamic responses of central and peripheral infusions of hypertonic NaCl during hemorrhage in conscious and isoflurane-anesthetized sheep.Shock. 2006; 26: 77-86https://doi.org/10.1097/01.shk.0000215314.76370.c3
- Cerebral osmoregulatory reduction of plasma renin concentration in sheep.Acta Physiol Scand. 1994; 152: 323-332https://doi.org/10.1111/j.1748-1716.1994.tb09812.x
- Intravenous hypertonic NaCl acts via cerebral sodium-sensitive and angiotensinergic mechanisms to improve cardiac function in haemorrhaged conscious sheep.J Physiol. 2007; 583: 1129-1143https://doi.org/10.1113/jphysiol.2007.139592
- Influence of forebrain lesions and isoflurane anaesthesia, respectively, on responses to the intracarotid infusion of angiotensin II in sheep.Acta Physiol Scand. 1995; 155: 427-434https://doi.org/10.1111/j.1748-1716.1995.tb09992.x
- Renal Sympathetic Nerve-Derived Signaling in Acute and Chronic kidney Diseases.Int J Mol Sci. 2020; 21https://doi.org/10.3390/ijms21051647
- The role of renal sympathetic nervous system in the pathogenesis of ischemic acute renal failure.Eur J Pharmacol. 2003; 481: 241-248
- Preventive mechanisms of agmatine against ischemic acute kidney injury in rats.Eur J Pharmacol. 2009; 603: 108-113https://doi.org/10.1016/j.ejphar.2008.11.062
- Renoprotective effects of l-carnosine on ischemia/reperfusion-induced renal injury in rats.J Pharmacol Exp Ther. 2006; 319: 640-647https://doi.org/10.1124/jpet.106.110122
- Protective effect of ischemic preconditioning on ischemia/reperfusion-induced acute kidney injury through sympathetic nervous system in rats.Eur J Pharmacol. 2013; 718: 206-212https://doi.org/10.1016/j.ejphar.2013.08.032
- Protective effect of moxonidine on ischemia/reperfusion-induced acute kidney injury through α2/imidazoline I1 receptor.Eur J Pharmacol. 2013; 718: 173-180https://doi.org/10.1016/j.ejphar.2013.08.036
- Clonidine after renal ischemia to lessen acute renal failure and microvascular damage.Kidney Int. 1980; 18: 309-322https://doi.org/10.1038/ki.1980.141
- Moxonidine prevents ischemia/reperfusion-induced renal injury in rats.Eur J Pharmacol. 2009; 603: 73-78https://doi.org/10.1016/j.ejphar.2008.12.012
- Activation of sensory neurons reduces ischemia/reperfusion-induced acute renal injury in rats.Anesthesiology. 2009; 110: 361-369https://doi.org/10.1097/ALN.0b013e3181942f3c
- Murine models of renal ischemia reperfusion injury: An opportunity for refinement using noninvasive monitoring methods.Physiol Rep. 2022; 10: e15211https://doi.org/10.14814/phy2.15211
- Anti-inflammatory and antinecrotic effects of the volatile anesthetic sevoflurane in kidney proximal tubule cells.Am J Physiol Ren Physiol. 2006; 291: F67-F78https://doi.org/10.1152/ajprenal.00412.2005
- Differential protective effects of volatile anesthetics against renal ischemia-reperfusion injury in vivo.Anesthesiology. 2004; 101: 1313-1324https://doi.org/10.1097/00000542-200412000-00011
- Propofol attenuated acute kidney injury after orthotopic liver transplantation via inhibiting gap junction composed of connexin 32.Anesthesiology. 2015; 122: 72-86https://doi.org/10.1097/aln.0000000000000448
- Biomarkers in acute kidney injury (AKI).Best Pr Res Clin Anaesthesiol. 2017; 31: 331-344https://doi.org/10.1016/j.bpa.2017.10.003
- Should the angiotensin II antagonists be discontinued before surgery?.Anesth Analg. 2001; 92: 26-30https://doi.org/10.1097/00000539-200101000-00006
- A Systematic Review of Outcomes Associated With Withholding or Continuing Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers Before Noncardiac Surgery.Anesth Analg. 2018; 127: 678-687https://doi.org/10.1213/ANE.0000000000002837
Article info
Publication history
Footnotes
Funding: The work was supported by the Swedish Research Council to R.F. [grant numbers 2014-02569 and 2014-07606].
Conflict of Interest: Financial disclosure and conflicts of interest for this work: None.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy