Advertisement
Review Article| Volume 42, ISSUE 5, 151314, September 2022

Genetics of Chronic Kidney Disease in Low-Resource Settings

      Summary

      Advances in kidney genomics in the past 20 years has opened the door for more precise diagnosis of kidney disease and identification of new and specific therapeutic agents. Despite these advances, an imbalance exists between low-resource and affluent regions of the world. Individuals of European ancestry from the United States, United Kingdom, and Iceland account for 16% of the world's population, but represent more than 80% of all genome-wide association studies. South Asia, Southeast Asia, Latin America, and Africa together account for 57% of the world population but less than 5% of genome-wide association studies. Implications of this difference include limitations in new variant discovery, inaccurate interpretation of the effect of genetic variants in non-European populations, and unequal access to genomic testing and novel therapies in resource-poor regions. It also further introduces ethical, legal, and social pitfalls, and ultimately may propagate global health inequities. Ongoing efforts to reduce the imbalance in low-resource regions include funding and capacity building, population-based genome sequencing, population-based genome registries, and genetic research networks. More funding, training, and capacity building for infrastructure and expertise is needed in resource-poor regions. Focusing on this will ensure multiple-fold returns on investments in genomic research and technology.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Nephrology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      REFERENCES

        • Xie Y
        • Bowe B
        • Mokdad AH
        • et al.
        Analysis of the Global Burden of Disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016.
        Kidney Int. 2018; 94: 567-581
        • GBD Chronic Kidney Disease Collaboration
        Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.
        Lancet. 2020; 395: 709-733
        • Stanifer JW
        • Jing B
        • Tolan S
        • et al.
        The epidemiology of chronic kidney disease in sub-Saharan Africa: a systematic review and meta-analysis.
        Lancet Glob Health. 2014; 2: e174-e181
        • Lander ES
        • Linton LM
        • Birren B
        • et al.
        Initial sequencing and analysis of the human genome. [Erratum: Nature. 2001;412(6846):565.].
        Nature. 2001; 409: 860-921https://doi.org/10.1038/35057062
        • Hildebrandt F.
        Genetic kidney diseases.
        Lancet. 2010; 375: 1287-1295
        • Groopman EE
        • Povysil G
        • Goldstein DB
        • Gharavi AG.
        Rare genetic causes of complex kidney and urological diseases.
        Nat Rev Nephrol. 2020; 16: 641-656https://doi.org/10.1038/s41581-020-0325-2
        • KDIGO Conference Participants
        Genetics in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference.
        Kidney Int. 2022; 101: 1126-1141https://doi.org/10.1016/j.kint.2022.03.019
        • Bustamante CD
        • Burchard EG
        • De la Vega FM.
        Genomics for the world.
        Nature. 2011; 475: 163-165
        • Martin AR
        • Kanai M
        • Kamatani Y
        • Okada Y
        • Neale BM
        • Daly MJ.
        Clinical use of current polygenic risk scores may exacerbate health disparities.
        Nat Genet. 2019; 51: 584-591
        • Borrell LN
        • Elhawary JR
        • Fuentes-Afflick E
        • et al.
        Race and genetic ancestry in medicine - a time for reckoning with racism.
        N Engl J Med. 2021; 384: 474-480
        • Ruan Y
        • Lin YF
        • Feng YA
        • et al.
        Improving polygenic prediction in ancestrally diverse populations.
        Nat Genet. 2022; 54: 573-580https://doi.org/10.1038/s41588-022-01054-7
        • Fatumo S
        • Chikowore T
        • Choudhury A
        • Ayub M
        • Martin AR
        • Kuchenbaecker K.
        A roadmap to increase diversity in genomic studies.
        Nat Med. 2022; 28: 243-250
        • Karczewski KJ
        • Francioli LC
        • Tiao G
        • et al.
        The mutational constraint spectrum quantified from variation in 141,456 humans.
        Nature. 2020; 581: 434-443
      1. GWAS Catalog: Trait: kidney, National Human Genome Research Institute disease. Accessed May 2, 2022. https://www.ebi.ac.uk/gwas/efotraits/EFO_0003086

        • Kaze AD
        • Ilori T
        • Jaar BG
        • Echouffo-Tcheugui JB
        Burden of chronic kidney disease on the African continent: a systematic review and meta-analysis.
        BMC Nephrol. 2018; 19: 125https://doi.org/10.1186/s12882-018-0930-5
        • Fatumo S
        • Chikowore T
        • Kalyesubula R
        • et al.
        Discovery and fine-mapping of kidney function loci in first genome-wide association study in Africans.
        Hum Mol Genet. 2021; 30: 1559-1568https://doi.org/10.1093/hmg/ddab088
        • Mills MC
        • Rahal C
        A scientometric review of genome-wide association studies.
        Commun Biol. 2019; 2: 9https://doi.org/10.1038/s42003-018-0261-x
        • Mersha TB
        • Abebe T
        Self-reported race/ethnicity in the age of genomic research: its potential impact on understanding health disparities.
        Hum Genom. 2015; 9: 1https://doi.org/10.1186/s40246-014-0023-x
        • Wuttke M
        • Li Y
        • Li M
        • et al.
        A catalog of genetic loci associated with kidney function from analyses of a million individuals.
        Nat Genet. 2019; 51: 957-972https://doi.org/10.1038/s41588-019-0407-x
        • Morris AP
        • Le TH
        • Wu H
        • et al.
        Trans-ethnic kidney function association study reveals putative causal genes and effects on kidney-specific disease aetiologies.
        Nat Commun. 2019; 10: 29https://doi.org/10.1038/s41467-018-07867-7
        • George C
        • Yako YY
        • Okpechi IG
        • Matsha TE
        • Kaze Folefack FJ
        • Kengne AP
        An African perspective on the genetic risk of chronic kidney disease: a systematic review.
        BMC Med Genet. 2018; 19: 187https://doi.org/10.1186/s12881-018-0702-x
        • Thomson R
        • Genovese G
        • Canon C
        • et al.
        Evolution of the primate trypanolytic factor APOL1.
        Proc Natl Acad Sci U S A. 2014; 111: E2130-E2139https://doi.org/10.1073/pnas.1400699111
        • Genovese G
        • Friedman DJ
        • Ross MD
        • et al.
        Association of trypanolytic ApoL1 variants with kidney disease in African Americans.
        Science. 2010; 329: 841-845https://doi.org/10.1126/science.1193032
        • Freedman BI
        • Kopp JB
        • Langefeld CD
        • et al.
        The apolipoprotein L1 (APOL1) gene and nondiabetic nephropathy in African Americans.
        J Am Soc Nephrol. 2010; 21: 1422-1426https://doi.org/10.1681/ASN.2010070730
        • Friedman DJ
        • Pollak MR
        Genetics of kidney failure and the evolving story of APOL1.
        J Clin Invest. 2011; 121: 3367-3374https://doi.org/10.1172/jci46263
        • Xong HV
        • Vanhamme L
        • Chamekh M
        • et al.
        A VSG expression site-associated gene confers resistance to human serum in Trypanosoma rhodesiense.
        Cell. 1998; 95: 839-846https://doi.org/10.1016/s0092-8674(00)81706-7
        • Vanhamme L
        • Paturiaux-Hanocq F
        • Poelvoorde P
        • et al.
        Apolipoprotein L-I is the trypanosome lytic factor of human serum.
        Nature. 2003; 422: 83-87https://doi.org/10.1038/nature01461
        • Kiberd BA
        • Clase CM
        Cumulative risk for developing end-stage renal disease in the US population.
        J Am Soc Nephrol. 2002; 13: 1635-1644
        • Friedman DJ
        • Pollak MR
        Apolipoprotein L1 and kidney disease in African Americans.
        Trends Endocrinol Metab. 2016; 27: 204-215https://doi.org/10.1016/j.tem.2016.02.002
      2. O'Neill A. Latin American - statistics & facts. Accessed May 20, 2022. https://www.statista.com/topics/3287/latin-america/#dossierKeyfigures

        • Salzano FM
        • Sans M.
        Interethnic admixture and the evolution of Latin American populations.
        Genet Mol Biol. 2014; 37: 151-170https://doi.org/10.1590/s1415-47572014000200003
        • Pena SD
        • Di Pietro G
        • Fuchshuber-Moraes M
        • et al.
        The genomic ancestry of individuals from different geographical regions of Brazil is more uniform than expected.
        PLoS One. 2011; 6: e17063https://doi.org/10.1371/journal.pone.0017063
      3. G Vajgel, SC Lima, DJS Santana, et al., Effect of a single apolipoprotein L1 gene nephropathy variant on the risk of advanced Lupus Nephritis in Brazilians, J Rheumatol, 47 (8), 2020, 1209–1217. https://doi.org/10.3899/jrheum.190684.

        • Riella C
        • Siemens TA
        • Wang M
        • et al.
        APOL1-associated kidney disease in Brazil.
        Kidney Int Rep. 2019; 4: 923-929https://doi.org/10.1016/j.ekir.2019.03.006
        • Watanabe A
        • Guaragna MS
        • Belangero VMS
        • et al.
        APOL1 in an ethnically diverse pediatric population with nephrotic syndrome: implications in focal segmental glomerulosclerosis and other diagnoses.
        Pediatr Nephrol. 2021; 36: 2327-2336https://doi.org/10.1007/s00467-021-04960-w
        • Kramer HJ
        • Stilp AM
        • Laurie CC
        • et al.
        African ancestry-specific alleles and kidney disease risk in Hispanics/Latinos.
        J Am Soc Nephrol. 2017; 28: 915-922https://doi.org/10.1681/ASN.2016030357
        • Feltran LS
        • Varela P
        • Silva ED
        • et al.
        Targeted next-generation sequencing in Brazilian children with nephrotic syndrome submitted to renal transplant.
        Transplantation. 2017; 101: 2905-2912https://doi.org/10.1097/TP.0000000000001846
        • Wikipedia contributors
        South Asia.
        Wikipedia, The Free Encyclopedia. 2022; 19 (Accessed May 29, 2022.): 25
      4. Poverty & equity data portal. Accessed May 29, 2022. povertydata.worldbank.org.

      5. Current health expenditure per capita-South Asia. World health organization global health expenditure database. Accessed February 13, 2023. https://data.worldbank.org/indicator/SH.XPD.CHEX.PC.CD?locations=8S.

        • Wikipedia contributors
        List of countries by research and development spending.
        Wikipedia, The Free Encyclopedia. 2022; 04 (Accessed June 1, 2022.): 47
        • Abdulla MA
        • Ahmed I
        • et al.
        • HUGO Pan-Asian SNP Consortium
        Indian Genome Variation Consortium. Mapping human genetic diversity in Asia.
        Science. 2009; 326: 1541-1545
        • Majumder PP.
        The human genetic history of South Asia.
        Curr Biol. 2010; 20: R184-R187
        • Gbadegesin RA
        • Adeyemo A
        • Webb NJ
        • et al.
        Mid-West Pediatric Nephrology Consortium. HLA-DQA1 and PLCG2 are candidate risk loci for childhood-onset steroid-sensitive nephrotic syndrome.
        J Am Soc Nephrol. 2015; 26: 1701-1710
        • Nanayakkara S
        • Senevirathna ST
        • Abeysekera T
        • et al.
        An integrative study of the genetic, social and environmental determinants of chronic kidney disease characterized by tubulointerstitial damages in the North Central Region of Sri Lanka.
        J Occup Health. 2014; 56: 28-38
        • Joshi A
        • Sinha A
        • Sharma A
        • et al.
        NephQuest Consortium. Next-generation sequencing for congenital nephrotic syndrome: a multi-center cross-sectional study from India.
        Indian Pediatr. 2021; 58: 445-451
        • Jayasumana C.
        Chronic Interstitial Nephritis in Agricultural Communities (CINAC) in Sri Lanka.
        Semin Nephrol. 2019; 39: 278-283
        • Liyanage T
        • Toyama T
        • Hockham C
        • et al.
        Prevalence of chronic kidney disease in Asia: a systematic review and analysis.
        BMJ Glob Health. 2022; 7e007525
        • Abdulla MA
        • Ahmed I
        • et al.
        • HUGO Pan-Asian SNP Consortium
        Indian Genome Variation Consortium. Mapping human genetic diversity in Asia.
        Science. 2009; 326: 1541-1545
        • Lu L
        • Yap YC
        • Nguyen DQ
        • Deciphering Diversities: Renal Asian Genetics Network (DRAGoN)
        Multicenter study on the genetics of glomerular diseases among southeast and south Asians: Deciphering Diversities - Renal Asian Genetics Network (DRAGoN).
        Clin Genet. 2022; 101: 541-551
        • Trautmann A
        • Lipska-Ziętkiewicz BS
        • Schaefer F.
        Exploring the clinical and genetic spectrum of steroid resistant nephrotic syndrome: the PodoNet Registry.
        Front Pediatr. 2018; 6: 200
        • Warejko JK
        • Tan W
        • Daga A
        • et al.
        Whole exome sequencing of patients with steroid-resistant nephrotic syndrome.
        Clin J Am Soc Nephrol. 2018; 13: 53-62
        • Jarolim P
        • Palek J
        • Amato D
        • et al.
        Deletion in erythrocyte band 3 gene in malaria-resistant Southeast Asian ovalocytosis.
        Proc Natl Acad Sci U S A. 1991; 88: 11022-11026
        • Wrong O
        • Bruce LJ
        • Unwin RJ
        • Toye AM
        • Tanner MJ.
        Band 3 mutations, distal renal tubular acidosis, and Southeast Asian ovalocytosis.
        Kidney Int. 2002; 62: 10-19
        • Woo KT
        • Lau YK
        • Wong KS
        • Zhao Y
        • Chan CM.
        Parallel genotyping of 10,204 single nucleotide polymorphisms to screen for susceptible genes for IgA nephropathy.
        Ann Acad Med Singap. 2009; 38: 894-899
        • Pungsrinont T
        • Nettuwakul C
        • Sawasdee N
        • Rungroj N
        • Sritippayawan S
        • Yenchitsomanus PT.
        Association between intelectin-1 variation and human kidney stone disease in northeastern Thai population.
        Urolithiasis. 2021; 49: 521-532
        • Kiryluk K
        • Li Y
        • Scolari F
        • et al.
        Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens.
        Nat Genet. 2014; 46: 1187-1196
        • Li M
        • Foo JN
        • Wang JQ
        • et al.
        Identification of new susceptibility loci for IgA nephropathy in Han Chinese.
        Nat Commun. 2015; 6: 7270
        • Li M
        • Wang L
        • Shi DC
        • et al.
        Genome-wide meta-analysis identifies three novel susceptibility loci and reveals ethnic heterogeneity of genetic susceptibility for IgA nephropathy.
        J Am Soc Nephrol. 2020; 31: 2949-2963
        • Kopp JB
        • Smith MW
        • Nelson GW
        • et al.
        MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis.
        Nat Genet. 2008; 40: 1175-1184
        • Kao WH
        • Klag MJ
        • Meoni LA
        • et al.
        MYH9 is associated with nondiabetic end-stage renal disease in African Americans.
        Nat Genet. 2008; 40: 1185-1192
        • Peterson RE
        • Kuchenbaecker K
        • Walters RK
        • et al.
        Genome-wide association studies in ancestrally diverse populations: opportunities, methods, pitfalls, and recommendations.
        Cell. 2019; 179: 589-603https://doi.org/10.1016/j.cell.2019.08.051
        • Martin AR
        • Gignoux CR
        • Walters RK
        • et al.
        Human demographic history impacts genetic risk prediction across diverse populations.
        Am J Hum Genet. 2017; 100: 635-649https://doi.org/10.1016/j.ajhg.2017.03.004
        • Jooma S
        • Hahn MJ
        • Hindorff LA
        • Bonham VL
        Defining and achieving health equity in genomic medicine.
        Ethn Dis. 2019; 29: 173-178https://doi.org/10.18865/ed.29.S1.173
        • Adu D
        • Ojo A
        Overview of the Human Heredity and Health in Africa Kidney Disease Research Network (H3A-KDRN).
        Kidney360. 2021; 2: 129-133https://doi.org/10.34067/kid.0002592020
        • Rotimi C
        • Abayomi A
        • Abimiku A
        • et al.
        Research capacity. Enabling the genomic revolution in Africa.
        Science. 2014; 344: 1346-1348
        • Osafo C
        • Raji YR
        • Olanrewaju T
        • et al.
        Genomic approaches to the burden of kidney disease in Sub-Saharan Africa: the Human Heredity and Health in Africa (H3Africa) Kidney Disease Research Network.
        Kidney Int. 2016; 90: 2-5https://doi.org/10.1016/j.kint.2015.12.059
        • Osafo C
        • Raji YR
        • Burke D
        • et al.
        Human Heredity and Health (H3) in Africa Kidney Disease Research Network: a focus on methods in sub-Saharan Africa.
        Clin J Am Soc Nephrol. 2015; 10: 2279-2287https://doi.org/10.2215/CJN.11951214
        • Araújo Neto LA
        • Teixeira LA
        New problems of a new health system: the creation of a national public policy of rare diseases care in Brazil (1990s-2010s).
        Salud Colect. 2020; 16: e2210https://doi.org/10.18294/sc.2020.2210
        • Silva-Zolezzi I
        • Hidalgo-Miranda A
        • Estrada-Gil J
        • et al.
        Analysis of genomic diversity in Mexican Mestizo populations to develop genomic medicine in Mexico.
        Proc Natl Acad Sci U S A. 2009; 106: 8611-8616
        • Feltran LS
        • Watanabe A
        • Guaragna MS
        • et al.
        Brazilian Network of Pediatric Nephrotic Syndrome (REBRASNI).
        Kidney Int Rep. 2019; 5: 358-362https://doi.org/10.1016/silvaj.ekir.2019.11.007
        • GenomeAsia100K Consortium
        The GenomeAsia 100K Project enables genetic discoveries across Asia.
        Nature. 2019; 576: 106-111https://doi.org/10.1038/s41586-019-1793-z
        • Sivasubbu S
        • Scaria V.
        • GUaRDIAN Consortium
        Genomics of rare genetic diseases-experiences from India.
        Hum Genomics. 2019; 14: 52
        • Hariprakash JM
        • Vellarikkal SK
        • Verma A
        • et al.
        SAGE: a comprehensive resource of genetic variants integrating South Asian whole genomes and exomes.
        Database (Oxford). 2018; 2018: 1-10
        • Narang A
        • Das RR
        • Chaurasia A
        • Mukhopadhyay A
        • Mukerji M
        • Dash D.
        IGVBrowser–a genomic variation resource from diverse Indian populations.
        Database (Oxford). 2010; 2010: baq022
        • Ahmed PH
        • Vidya V
        • More RP
        • et al.
        INDEX-db: the Indian exome reference database (phase I).
        J Comput Biol. 2019; 26: 225-234
        • Pradhan S
        • Sengupta M
        • Dutta A
        • et al.
        Indian genetic disease database.
        Nucleic Acids Res. 2011; 39: D933-D938
        • Zhang JF
        • James F
        • Shukla A
        • Girisha KM
        • Paciorkowski AR.
        India Allele Finder: a web-based annotation tool for identifying common alleles in next-generation sequencing data of Indian origin.
        BMC Res Notes. 2017; 10: 233
        • Narang A
        • Uppilli B
        • Vivekanand A
        • TRISUTRA Ayurgenomics Consortium
        Frequency spectrum of rare and clinically relevant markers in multiethnic Indian populations (ClinIndb): a resource for genomic medicine in India.
        Hum Mutat. 2020; 41: 1833-1847
        • Nilakantam SR
        • Bhat D
        • Ravi MD
        • Dayananda CM
        • Basavanagowdappa H
        • Kumar KJ
        Comprehensive rare disease care model for screening and diagnosis of rare genetic diseases - an experience of private medical college and hospital, South India.
        Intractable Rare Dis Res. 2020; 9: 179-183
      6. Genomics and other omics technologies for enabling medical decision. Accessed February 13, 2023. http://gomed.igib.in/home.

        • Jooma S
        • Hahn MJ
        • Hindorff LA
        • Bonham VL.
        Defining and achieving health equity in genomic medicine.
        Ethn Dis. 2019; 29: 173-178https://doi.org/10.18865/ed.29.S1.173